Revannath Dnyandeo Nikam 1,2,* 、Jongwon Lee 1,2 、Wooseok Choi 1,2 、Writam Banerjee 1,2 、Myonghoon Kwak 1,2 、Manoj Yadav 1,2 、Hyunsang Hwang 1,2,*
程序存储器是太空应用的关键组件。它们永久存储在微控制器上执行的程序或现场可编程门阵列 (FPGA) 的配置数据。它们在可靠性、容错性和抗辐射性方面具有最严格的要求。欧盟资助的 MNEMOSYNE 项目旨在展示新一代具有串行接口的抗辐射高密度非易失性程序存储器。该技术将基于最先进的商用嵌入式磁性 RAM,采用 22 nm FD-SOI 工艺。如果成功,该项目将推出第一款密度高于 64 Mb 的抗辐射非易失性程序存储器,用于太空应用。存储器是太空应用的关键组件。它们可分为三种类型:大容量、高速缓存和程序存储器。后者永久存储可作为 MCU 启动存储器或 FPGA 配置非易失性存储器 (NVM) 执行的程序。在太空应用中,程序存储器是需要最高可靠性、零错误容忍度和最高辐射强度的存储器,因为它与系统上电直接相关。另一方面,随着系统性能要求的提高,集成电路(IC)越来越密集。最近的太空程序存储器需要更高的速度和密度。例如,欧洲辐射硬化 FPGA BRAVE NG-Medium 至少需要 13Mb 的配置。下一代 NG-large 和 NG-Ultra 将需要 128Mb 和高达 512Mb 的高速、低引脚数配置存储器。目前,对于这种关键存储器,没有可用的欧洲辐射硬化存储器组件。MNEMOSYNE 项目旨在基于最先进和成熟的欧洲商用 22 nm FDSOI 磁性 RAM (MRAM) 技术开发(设计和原型)新一代具有串行接口的辐射硬化高密度 NVM。得益于 FDSOI 半导体结构,该工艺自然提供了良好的辐射耐受性。此外,MRAM 技术天然具有 SEU 免疫力。关键创新包括:• 第一个密度高于 1Mb 的欧洲 RHBD(抗辐射设计)空间 NVM;• 第一个密度高于 16Mb 的全球 RHBD 空间 NVM;• 第一个采用低于 65nm 工艺的欧洲嵌入式 RHBD 高性能空间 NVM IP 核;• 第一个用于空间应用的新一代自旋转移力矩 (STT) MRAM;• 第一个在 22nm FDSOI 上应用于数字和模拟 IP 的 RHBD,用于缓解 TID 和 SEE;高密度 MRAM 的开发将重塑航天工业及其他领域的整个存储器芯片市场。
(1) D. Evans,“物联网:互联网的下一次发展将如何改变一切”,(白皮书),https://www。cisco.com / c / dam / global / ru_ua / assets / pdf / iot-ibsg-0411final。pdf(访问日期 2020-01-04)。(2) G.E.Moore,“将更多组件塞入集成电路”,Proc.IEEE,卷。86,号。1,页。82-85,1998 年 1 月,电子学,卷。38,号。8,页。114-117,1965 年 4 月。(3) A. Chien 和 V. Karamcheti,“摩尔定律:第一个结束和一个新的开始”,计算机,卷。46,页。48-53,2013 年 12 月。( 4 ) T. Hanyu、T. Endoh、Y. Ando、S. Ikeda、S. Fukami、H. Sato、H. Koike、Y. Ma、D. Suzuki 和 H. Ohno,“自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 技术”,载于《非易失性存储器和存储技术的发展》,B. Magyari-Kope 和 Y. Nishi 编辑,页。237-281,第 7 章,Woodhead Publishing 电子和光学材料系列,第 2 版,2019 年。( 5 ) 羽生貴弘,“MTJ / MOSハイブリッド回路技术 ”,応用物理 ,vol.86,no.8,pp.662-665,2017 年 8 月。( 6 ) T. Hanyu、T. Endoh、D. Suzuki、H. Koike、Y. Ma、N. Onizawa、M. Natsui、S. Ikeda 和 H. Ohno,“使用基于 MTJ 的 VLSI 计算的待机无电源集成电路”,Proc.IEEE,vol.104,
实现这一目标的潜在技术。,使用可切换等离激元技术和波导37可能会在257上进行进一步的尺寸降低,如后面的一部分所述。258这两个领域的未来发展对于任何259个光子记忆元素或需要进行任何处理的未来芯片的可行使用都很重要。260 261薄膜应用:颜色像素,显示和智能玻璃262 263
