在2005年推出的错误(LWE)假设[REG05]的学习已成为设计后量子加密术的Baiss。lwe及其结构化变体,例如ring-lwe [lpr10]或ntru [hps98],是构建许多高级加密启示剂的核心GVW15],非交互式零知识[PS19],简洁的论证[CJJ22]以及经典的[GKW17,WZ17,GKW18,LMW23]和量子加密[BCM + 18,MAH18B]的许多其他进步。虽然LWE在产生高级原语方面具有令人惊讶的表现力,但其他量子后的假设,例如与噪音[BFKL94],同基因[COU06,RS06,CLM + 18]和多变量四边形[HAR82]相近的疾病,以前的疾病是指定的,这使得直到直接的指示,这使得Inderiveive of to Inderiveive negripivessive to and Imply to negriptive for nightimivess,量子后密码学。这种状况高度令人满意,因为我们想在假设的假设中有一定的多样性,这意味着对冲针对意外的隐式分析突破。的确,最近的作品[CD23A,MMP + 23,ROB23]使Sidh在多项式时间中经典损坏的Quantum假设曾经是宽松的。这项工作旨在解决可能导致高级量化后加密术的技术和假设方面的停滞。在大多数情况下,这种假设缺乏多功能性可能归因于缺乏利用其他量词后假设的技术。这项工作的重点在于基于代码的加密假设,例如噪声(LPN)假设[BFKL94]及其变体的学习奇偶校验。与噪声的学习奇偶校验认为,被稀疏噪声扰动的随机线性方程(带有种植的秘密解决方案)出现了。即:
如果我们在这个基上用 T 2 门代替 T 门,情况就会发生显著变化。执行幺正运算 P=T 2 的门称为相位门。基 {H, P, CNOT} 上的量子电路通常被称为稳定器电路或克利福德电路。Gottesman-Knill 定理指出,基 {H, P, CNOT} 上的电路并不比经典计算机更强大(例如,参见 [6,第 10.5.4 章])。还推导出克利福德电路的更强限制 [1, 3]。最近,Buhrman 等人 [3] 表明,每个能用克利福德电路计算的布尔函数都可以写成输入变量子集的奇偶校验或其否定。
我们处于基础设施开发中的关键时刻:DC电源系统将取代许多商业建筑中的传统AC基础设施。这种过渡有望获得重大的好处,包括节能和改进的数字功率控制。此外,直流电源分布自然与可再生能源和能源存储系统一致,它们固有地生成或存储了直流电源。。随着可再生能源成本在许多领域继续降低,达到或超过电网奇偶校验,直流电源分配和清洁能源之间的协同作用将改变我们的动力和管理现代商业建筑的方式。Cisco领导了二十年来的Ethernet(POE)的发展,将其确立为网络设备的主要远程供电技术。
注意:该图中的条形和点报告了相对于零零发射路径的零散世界中可再生能源投资的实际投资变化,以及对钴,铜,锂和镍的需求,随着国际能源机构的net-Zer-Zero-En-En-En-E-Enmiss-Encomions Sevario(在一个集成的世界中)的需求增加。国家级变量通过基于GDP的权重汇总到集团和世界级别,在酒吧购买电力奇偶校验和点的温室气体排放中。在2022年联合国投票中投票赞成俄罗斯从乌克兰撤军的国家被标记为“美国 - 欧洲+集团”,其余国家都包括在“中国 - 俄罗斯+集团”中。 。
•线性块代码 - 发电机矩阵和奇偶校验检查矩阵 - 一些特定的线性块代码 - 循环代码 - 最佳的软性决策线性块代码 - 硬性决策解码 - 硬性决策 - 硬性决策与软决策之间的性能比较 - 在线性块的最小范围内 - 与插入式范围的范围内的范围 - 与编码的范围内的最小范围 - 乱式编码 - 乱码的编码数据 - 乱式的编码数据 - 乱式的编码数据 - 乱式编码数据 - 乱码数据 - 低密度平价检查代码 - 极性代码•卷积代码 - 卷积代码的传输功能
自动化决策系统越来越多地用于我们的日常生活中,例如在贷款,保险和医疗服务的背景下。一个挑战是,这些决策系统可以证明对弱势群体的歧视(Dwork等,2012)。为了减轻此问题,已经提出了公平的限制(Hardt等,2016; Dwork等,2012),例如寻求实现某些统计奇偶校验属性。尽管公平的机器学习已经进行了广泛的研究,但大多数工作都考虑了静态设置,而无需考虑决策的顺序反馈效果。同时,算法决定可能会通过与社会的反馈循环来改变数据中基本统计模式的变化。反过来,这会影响决策过程;
i ˆγi。基本要求是,涉及量子点电荷以及感兴趣的主要产物(保守的量子点)的局部奇偶校验ˆπ,并且合并平等的两个特征空间ˆπ产生了可区分的测量信号。我们发现量子读数可能必须依靠测量量子点接触电流的噪声相关性。平均电流仅针对细胞的参数或在存在松弛过程的情况下瞬时编码Qubit读数。我们还讨论了相应的测量时间和分解时间,并考虑了对测量方案有害的残留主要杂交杂交等过程。最后,我们强调的是,基本机制(我们称为对称性保护的读数)是相当一般的,对Majorana和非Majorana系统具有进一步的影响。
• 由可编程 PLL 在每个通道上生成完全可定制的波特率,范围从 300 波特到 2 Mbaud • 可编程字符间延迟(需要驱动/模拟某些航空电子仪器) • 可编程帧间延迟(用于以不同的速率安排帧) • 如果主机未按时发送新数据,则自动重复最后一帧(需要保持许多航空电子设备上的“inop”标志正常) • 8 位模式下的无/偶/奇/Space/Mark 奇偶校验和 9 位模式下的每个符号可编程 • 自动硬件或软件流控制 • 异步事件模式,100μs 内循环闭合(适用于需要立即回复的航空电子设备)
关于新的全球贫困线的注释:贫困数据现在在2017年购买力奇偶校验(PPP)的价格中表达,而与2011 PPP相比,以前版本中。随着全球价格水平的发展,必须更新全球贫困线,以反映线条价值的提高。新的全球贫困线为2.15美元,3.65美元和6.85美元,反映了2017年价格中低收入,中低收入和中高收入国家的典型国家贫困线。除了用名义反映更新外,上层收入国家提出了他们确定人们从2011年到2017年贫困的标准。因此,上线的增加较大,而不符合新标准的人口在大多数国家 /地区都比2011年的PPP高。请参阅pip.worldbank.org。
Inlyte的电池是基于一个利用镍的金属钠电池电池,使该技术不足以用于低成本储能。一年前,该公司收购了Beta Research Ltd.,该Ltd.拥有重要的IP和加工设备来制造钠 - 金属 - 甲板电池。作为一项高级研究项目机构 - 能源计划的一部分,Inlyte正在努力提高其基于钠和铁的电池化学的周期寿命,以实现商业生存能力。当公司回收旧的储能技术,类似于Enervenue的工作时,它们往往会在早期发挥大作用,而Inlyte也不例外,因为其大型种子圆圈。但是,该技术将直接与锂离子电池竞争,并在成本奇偶校验和系统集成方面涵盖了巨大的基础。