Si-硅、SiC-碳化硅、GaN-氮化镓、MPC-模型预测控制、PSO-粒子群优化、IFOC-间接磁场定向控制、DTC-直接扭矩控制、DSP-数字信号处理、FPGA-现场可编程门阵列
Si-硅,SiC-碳化硅,GaN-氮化镓,MPC-模型预测控制,PSO-粒子群优化,IFOC-间接磁场定向控制,DTC-直接扭矩控制,DSP-数字信号处理,FPGA-现场可编程门阵列
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
摘要 — 本文介绍了单片微波集成电路功率放大器的设计和实验结果,其中将 FET 堆叠方法与 Doherty 架构相结合,以最大限度地提高可实现的性能。具体而言,堆叠单元是通过将共源设备拆分为两个较小的设备来实现的,从而形成非常紧凑和对称的结构,而 Doherty 理念则用于实现高回退效率。该芯片采用 100 nm 栅极长度的硅基氮化镓技术实现,面向下行卫星 Ka 波段。两级放大器不仅满足功率要求,还满足空间使用的热约束。在 17.3 GHz 至 20.3 GHz 的频率范围内,测量结果显示线性增益约为 25 dB,峰值功率为 38 dBm,功率附加效率大于 35%。索引词 — Doherty 放大器、高效率、空间应用、氮化镓
欧盟研究:氮化镓制成的节能芯片可提高效率并减少二氧化碳排放量 菲拉赫,2022 年 11 月 23 日——欧洲研究团队开发了由半导体材料氮化镓制成的紧凑、低成本节能芯片。这为电动汽车无线充电、将可再生能源整合到电网以及实现可持续的 5G 部署开辟了能源效率的新维度。紧迫的能源转型、减少二氧化碳排放和不断增长的能源需求是我们这个时代的挑战性话题。效率比以往任何时候都更加重要。高效地产生、控制和使用能源是数字化和脱碳的关键杠杆。智能技术和氮化镓 (GaN) 等新型半导体材料在这里发挥着关键作用。GaN 功率半导体可在小空间内提供更多功率,节省能源,从而最大限度地减少二氧化碳排放量。在“UltimateGaN”研究项目中,来自科学和工业领域的团队已将任务设定为使 GaN 技术的优势可用于许多应用。结果是开创性的。材料和工艺技术的进一步发展使得未来能够以具有全球竞争力的成本提供高效、紧凑的GaN节能芯片。许多应用都可以从中受益——从电动汽车的无线充电到太阳能低损耗、平稳接入电网,再到5G网络的快速、经济高效扩张。例如在能源效率方面,为电动汽车无线充电开发的原型能够以96%的效率传输能量。相比之下,目前市场上的系统的效率最多为93%。能源效率提高3%,到2030年每年可以减少约170万吨二氧化碳,这大致相当于约一百万辆内燃机汽车的排放量。英飞凌科技奥地利公司首席执行官 Sabine Herlitschka 表示:“能源效率是节约能源和减少二氧化碳排放的全球最大资源之一。氮化镓功率半导体是可持续发展的真正领跑者。结果表明,欧洲的研究对能源效率做出了决定性的贡献。每一个百分点都很重要,是
NXP:位于钱德勒上城区的园区拥有约 1,700 名员工。NXP 最近投资 1 亿美元,将其工厂打造成世界上最先进的氮化镓半导体工厂之一。该工厂支持多种用途,目前已具备为新兴 5G 应用提供组件的能力。
氧化镓 Ga 2 O 3 是一种很有前途的半导体电子材料。近年来,对其性质和合成技术进行了广泛的研究 [1,2]。不幸的是,对其外延生长的研究只集中在一个狭窄的最佳条件范围内。具体来说,还没有发表过关于宽区间温度变化对沉积速率影响的数据。这些数据对于彻底了解金属有机气相外延 (MOVPE) 的机制、充分考虑整个反应器容积内的化学和物理过程以及优化外延反应器的几何形状是必需的。在本研究中,研究了 MOVPE 中 Ga 2 O 3 沉积速率对宽区间温度变化的依赖关系。将获得的结果与众所周知的 GaN 和金属镓 (三甲基镓的单独热解) 的依赖关系进行了比较。为了排除反应器设计和温度测量方法对结果的影响,我们在类似条件下直接在同一反应器中测量了这些依赖关系。与任何其他化学气相外延工艺一样,MOVPE 中的沉积速率对温度的依赖性也具有三个明显的部分。在低温下,沉积速率受表面化学反应速率控制。这种生长方式称为动力学受限方式。在最简单的情况下,阿伦尼乌斯曲线的线性部分与之相对应。在存在分子氢甚至原子氢的情况下,动力学部分向低温(与金属有机化合物的单独热解依赖性相比)移动,这些氢可能由 V 族氢化物提供。在较高温度下,沉积速率受组分向表面的传输控制。
申请编号:GAN12-114A-E0011课程:微波及毫米波频率合成器(null)计画:使用0.12μm氮化镓制程实现正交反射型调变器(I/q反射型调制器中的0.12μmGan-Hemt过程中)晶片形式
100% 瓦隆回旋加速器弗勒吕斯,2021 年 2 月 9 日——2020 年,国家无线电元素研究所 (IRE) 与 IBA 签署了一项合同,将在其位于弗勒吕斯的场地上建造一台回旋加速器。该设备将使 IRE 能够在当地生产锗-68,锗是一种关键原材料,可使该研究所为抗击癌症做出更多贡献。IRE 今天提交了单一许可证(城市和环境许可证)申请,以推进该项目的进展。自 1970 年代成立以来,IRE 一直是核医学放射性同位素开发和生产的先驱。为了保持在其专业领域的领先地位,IRE 不断投资于新技术和团队,使公司能够实施创新、安全和可持续的生产方法。从这个投资角度来看,IRE 计划在其位于弗勒吕斯的场地上安装一台能量为 30 MeV 的回旋加速器。 “IRE 的使命一直是为健康做出贡献。这台新的回旋加速器将使我们能够更有效地实现这一目标”,IRE 总经理 Erich Kollegger 说道。回旋加速器是抗击癌症的关键设备。镓-68(或 Ga-68)在世界各地的医院中得到越来越多地使用,它是一种能够非常早期地检测某些癌症(例如神经内分泌肿瘤和复发性前列腺癌)的同位素,从而改善患者的预后。这就是对镓-68 的需求不断增长的原因。如今,IRE ELiT(IRE 的创新子公司)是仅有的两家在欧洲获得药物批准的全球供应商之一。这使得镓-68 成为该研究所的主要产品之一。为了在其发生器中生产镓-68,IRE 需要一种称为锗-68(或 Ge-68)的原材料。为了避免从偏远地区(尤其是美国)获取供应,IRE 决定通过安装回旋加速器在自己的场地生产锗-68。该设备宽约 2 米,重近 30 吨。这台机器加速粒子以生产放射性元素,例如锗-68。“第一台回旋加速器建于 1939 年。因此,用回旋加速器生产锗-68 并不是一种新的生产方法。在比利时,已经有大约 15 台回旋加速器,位于工业场所,但也位于大学医院,例如布鲁塞尔(Hôpital Erasme、Cliniques universitaires St Luc 等)、根特或安特卫普,它们允许在医院内直接生产放射性同位素,尽可能靠近患者,”Erich Kollegger 解释道。