铁磁薄膜和化学吸附分子层之间的界面表现出各种有趣的现象。[1] 对这些所谓自旋界面的积极研究 [2,3] 始于分子或有机自旋电子器件的发展,最初主要集中在铁磁材料附近引起的分子层的变化。局域 HOMO-LUMO 电子能级的自旋相关展宽 [2,4,5] 和相关的自旋过滤效应 [6–8] 在理解有机自旋阀和其他有机自旋电子器件中起着关键作用。此外,在邻位分子中建立可检测的自旋极化开辟了一个与分子材料中磁序传播相关的新研究领域。这导致分子组成元素上存在磁二向色信号 [9] 或形成自旋序作为分子电子态能量的函数的非平凡振荡。 [10,11]
摘要 二维 (2D) 范德华过渡金属磷三硫属化物家族由于其固有的 2D 反铁磁性而重新引起了人们的关注,这证明它们是单层极限下自旋电子学和磁子学中前所未有且高度可调的构建块。在此,受 Janus 过渡金属二硫属化物中表现出的原子取代潜能的启发,我们从第一性原理研究了基于 MnPS 3 和 NiPS 3 的硒化 Janus 单层的晶体、电子和磁性结构。此外,我们计算了磁振子色散并进行实时实空间原子动态模拟,以探索自旋波在 MnPS 3 、NiPS 3 、MnPS 1.5 Se 1.5 和 NiPS 1.5 Se 1.5 中的传播。我们的计算预测磁各向异性将大幅增强,并会出现较大的 Dzyaloshinskii-Moriya 相互作用,这是由于 2D Janus 层中诱导的反演对称性破缺所致。这些结果为开发 Janus 2D 过渡金属磷三硫属化物铺平了道路,并凸显了它们在磁子应用方面的潜力。
摘要:纳米台阶作为经典的纳米几何参考材料,在半导体工业中用于校准测量,因此控制纳米台阶的高度是保证测量准确的关键。为此,本研究采用原子层沉积(ALD)结合湿法刻蚀制备了形貌良好的高度为1,2,3和4nm的纳米台阶。利用三维保形ALD工艺有效控制制备的纳米台阶的粗糙度。此外,使用基于仿真的分析研究了表面粗糙度与高度之间的关系。本质上,粗糙度控制是制备临界尺寸小于5nm的纳米台阶的关键。在本研究中,通过ALD和湿法刻蚀相结合成功实现的纳米台阶的最小高度为1nm。此外,基于1nm纳米台阶样品,分析了标准材料质量保证的前提条件和制备方法的影响因素。最后,利用制备的样品进行时间依赖性实验,验证了纳米台阶作为参考材料的最佳稳定性。这项研究对制备高度在5纳米以内的纳米几何参考材料具有指导意义,并且该方法可以方便地用于制备晶片尺寸台阶高度参考材料,从而实现其在集成电路生产线中大规模工业化在线校准应用。
金柱勋 1 、成俊华 1 、金元中 2 、李建艺 3 、金洪允 1 、文成元 1 、张在赫 4 、金艺瑟 1 、杨英焕 1 、吴东乔 1 、灿雄
摘要 — 超薄 In 2 O 3 和其他最近探索的低热预算超薄氧化物半导体已显示出用于后端 (BEOL) 兼容逻辑层和单片 3-D (M3-D) 集成的巨大前景。然而,这些富含缺陷的原子级薄通道的长期稳定性和可靠性尚未得到深入探索。在这里,我们通过室温正偏压不稳定性 (PBI) 和负偏压不稳定性 (NBI) 实验研究了具有 1.2 纳米厚原子层沉积 (ALD) 生长的 In 2 O 3 通道的晶体管的长期可靠性。观察到的行为很大程度上可以用陷阱中性能级 (TNL) 模型来解释。已经开发出一种减少参数漂移的方法,使用顺序封装并通过 O 2 等离子体处理进行 VT 工程。经过处理后,正、负栅极偏压应力下的长期 VT 偏移幅度均有所降低,而负偏压应力下的其他晶体管参数也趋于稳定。在所有情况下,亚阈值摆幅 (SS) 都不会随时间而变化,这表明应力引起的界面缺陷形成于导带下方很远的地方(如果有的话)。
eappendix 1。与先前发表的文章相关的本研究与先前发表的五篇论文有关:Støen等。1:这项研究(Støen等人1)未评估基于机器学习的CP预测,而是对GMA的研究及其对CP的预测准确性。本研究利用了来自挪威和美国的婴儿样本的视频记录,GMA分类和CP结果,由Støen等人收集。1 Adde等。2:这项研究(Adde等人2)评估了一种基于常规机器学习的CP预测的简单统计方法,而无需评估外部有效性。所使用的机器学习方法与本研究中介绍的方法完全不同。本研究利用了Adde等人收集的挪威样本的视频录制,GMA分类和CP结果。2 Pascal等。 3:这项研究(Pascal等人 3)未评估基于机器学习的CP预测,而是使用GMA评估了CP的预测。 本研究利用了帕斯卡(Pascal)等人收集的比利时婴儿样本的视频录制,GMA分类和CP结果。 3 Aker等。 4:这项研究(Aker等人 4)未评估基于机器学习的CP预测,而是使用GMA评估了CP预测。 本研究利用了Aker等人收集的印度婴儿样本的视频录制,GMA分类和CP结果。 4 Ihlen等。 5:Ihlen等人的本研究和研究。 1,但先前对Ihlen等人的研究。2 Pascal等。3:这项研究(Pascal等人3)未评估基于机器学习的CP预测,而是使用GMA评估了CP的预测。本研究利用了帕斯卡(Pascal)等人收集的比利时婴儿样本的视频录制,GMA分类和CP结果。3 Aker等。4:这项研究(Aker等人4)未评估基于机器学习的CP预测,而是使用GMA评估了CP预测。本研究利用了Aker等人收集的印度婴儿样本的视频录制,GMA分类和CP结果。4 Ihlen等。 5:Ihlen等人的本研究和研究。 1,但先前对Ihlen等人的研究。4 Ihlen等。5:Ihlen等人的本研究和研究。 1,但先前对Ihlen等人的研究。5:Ihlen等人的本研究和研究。1,但先前对Ihlen等人的研究。5两者都利用了来自挪威和美国的婴儿样本的视频录制,GMA分类和CP结果,由Støen等人收集。5与本研究的完全自动化的深度学习方法相比,评估了一种半小节的常规机器学习方法,用于CP预测。Ihlen等人的研究。5均未评估常规机器学习方法的外部有效性。
这是一种很有前途的光吸收材料,具有低成本溶液加工、易于制造和优异的光电性能。[1,2] 自从首次报道采用甲基铵碘化铅 (MAPbI 3 ) 的钙钛矿太阳能电池 (PSC) 以来 [3],它们的小面积电池能量转换效率 (PCE) 现在已超过 25%。[4,5] PSC 的高效率是通过成分工程 [6–8]、表面钝化 [9–13] 和/或使用各种添加剂来调整钙钛矿层来实现的。[14–16] 除了钙钛矿层的组件工程外,人们还致力于开发高效的电荷传输层。[17–21] 特别是,电子传输层 (ETL) 在实现高效稳定的 PSC 中起着重要作用。 [22,23] 到目前为止,二氧化钛 (TiO 2 ) 是 PSC 中广泛应用的电子传输层,但其存在电导率低、表面缺陷密度高的问题。[24] 在替代电子传输层中,氧化锌 (ZnO) 因其高电子迁移率和与钙钛矿材料能级匹配良好而被视为一种方便的候选材料。[25,26] 这
氧化物半导体重新引起了人们对用于单片三维 (3D) 集成的互补金属氧化物半导体 (CMOS) 后端 (BEOL) 兼容器件的兴趣。为了获得高质量的氧化物/半导体界面和体半导体,提高氧化物半导体晶体管的性能至关重要。据报道,原子层沉积 (ALD) 氧化铟 (In 2 O 3 ) 具有优异的性能,例如高驱动电流、高迁移率、陡亚阈值斜率和超薄沟道。在本文中,使用 C – V 和电导方法系统地研究了 ALD In 2 O 3 晶体管的 MOS 栅极堆栈中的界面和体陷阱。从 C – V 测量中的积累电容直接获得了 0.93 nm 的低 EOT,表明高质量的栅极氧化物和氧化物/半导体界面。通过 TCAD 对 C – V 和 G – V 特性的模拟,证实了 In 2 O 3 块体中亚带隙能级的缺陷是造成 GP / ω 与 ω 曲线中电导峰的原因。从 C – V 测量中提取了 1×10 20 /cm 3 的高 n 型掺杂。使用电导方法实现了 3.3×10 20 cm − 3 eV − 1 的高亚带隙态密度 (DOS),这有助于实现高 n 型掺杂和高电子密度。高 n 型掺杂进一步证实了通道厚度缩放的能力,因为电荷中性水平在导带内部深度对齐。
氧化物半导体吸引了对互补金属 - 氧化金属 - 半导体(CMOS)后端(BEOL)兼容设备的兴趣,用于整体3维(3D)集成。要获得高质量的氧化物/半导体界面和大量半导体,至关重要的是增强氧化物半导体晶体管的性能。原子层沉积(ALD)氧化二颗粒(在2 O 3中)的性能卓越,例如高驱动电流,高迁移率,陡峭的亚阈值斜坡和超薄通道。在这项工作中,使用C – V和电导方法系统地研究了ALD的MOS栅极堆栈中ALD的MOS栅极堆栈中的界面和块状陷阱。直接从C – V测量中的累积电容直接实现了0.93 nm的低EOT,表明高质量的门氧化物和氧化物/半导体界面。在2 O 3中的批量缺陷确定了子量的能级,可以通过TCAD模拟C – V和G - V特性来负责G p /ω与ω曲线的电导峰值。从C - V测量中提取1×10 20 /cm 3的高N型掺杂。使用电导法实现了3.3×10 cm-3 ev-1的状态(DOS)的高尺寸(DOS),这有助于高N型掺杂和高电子密度。高N型掺杂进一步确定通道厚度缩放的能力,因为电荷中性水平在导带中深入对齐。
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。