电流[12–14]。此外,铜铁矿 PdCoO 2 和 PtCoO 2 被证明是导电性最强的氧化物。例如,Kushwaha 等人 [15] 在室温下测定了 PtCoO 2 的电阻率ρ低至 2.1 µΩ cm,这是迄今为止报道的氧化物的最低值。此外,在低温下,其电导率接近 Cu、Ag 和 Au 等金属的电导率。[15,16] 这些铜铁矿由二维 Pd 和 Pt 片组成,通过八面体配位的 CoO 2 连接。由于这种结构,它们的电导率具有强烈的各向异性,并且在 (ab) 平面内最高。此外,Kitamura 等人[17] 通过从头计算预测了 PtCoO 2 中存在较大的本征自旋霍尔效应,这使其成为一种有趣的材料,可用于制造铁磁赛道等自旋电子器件,在这些器件中,自旋霍尔效应可用于产生自旋电流。[18–22]
在过去的几十年中,互补的金属 - 氧化物 - 氧化 - 氧化核(CMOS)技术一直是现代综合电路发展的推动力。增强栅极静电控制以提高对短通道效应(SCE)的免疫力(尤其是在积极缩放晶体管技术的发展中)的关键策略。这包括开发高等效氧化物厚度(EOT)缩放的高κ /金属门技术,以及超薄体,鳍和堆叠的纳米片通道晶体管;在3 nm技术节点1之外,半导体工业(遵循FIN场效应晶体管技术)目前正在采用堆叠的纳米表晶体管。要进一步扩展长度尺寸并保持良好的驱动电流,至关重要的是抑制SCE。可以使用增加数量的薄堆积通道来实现这一目标。然而,常规半导体晶体管的性能迅速降低到硅的3 nm厚度低于3 nm的厚度,而INGAAS的性能降低了10 nm。二维(2D)半导体是一种替代通道材料,与传统的半导管相比,单层厚度和单层厚度较高,在单层厚度上具有更高的迁移率。但是,2D材料缺乏高品质的大区域CMOS兼容生长技术。也很难在其范德华表面形成介电。此外,这些材料很难浓缩,并且在Schottky金属/半导体触点处引起的高接触分析。特别是原子层氧化物半导体,尤其是无定形im-gallium-Zinc氧化物(Igzo) - 用于平面晶体管(TFTS)中的半导体通道材料(用于平面式式施用应用程序12)。但是,尽管是高批量制造的成熟技术,但氧化物半导体很少被视为用于缩放高性能晶体管的Channel材料。这是由于它们的低电荷载流子迁移率约为10 cm 2 v -1 s –1,并且在质量生产中使用时,它们通常需要多达几十纳米的通道厚度13。然而,对于单一三维(3D)整合应用14-21的CMOS后端(BEOL)中氧化物半导体晶体管的使用引起了兴趣。
通过在 120 m 2 g -1 MgAl 2 O 4 上生长 La 2 O 3 、Fe 2 O 3 和 LaFeO 3 薄膜证明了该系统
加密协议是一种抽象或具体的协议,它执行与安全相关的功能并应用加密方法 [b-Dong],正如本报告所示,QKD 协议 [b-ITU-T X.1710] 具有加密协议的特征。QKD 协议可以被视为一种密钥建立协议,其中两个远程方按照分步程序协商秘密对称密钥,其中每一步都与安全性有关。与基于算法的传统解决方案不同,QKD 协议需要使用专用硬件通过物理通道传输量子态,并使用软件对经典信息进行后处理以输出随机位作为密钥。从这个意义上讲,QKD 协议也可以被视为一种通信协议,其中通信协议是一套规则系统,允许通信系统中的两个或多个实体通过任何类型的物理量变化来传输信息 [b-Popovic]。本技术报告旨在介绍 QKDN 背景下的 QKD 协议,并提供一些标准化观点。
在很大程度上是由于整体两国频率梳(BFCS)[1]的出现,由于其固有的高尺寸和纠缠与fiftic网络的固有的高尺寸和纠缠相对于频率域中的量子信息处理越来越关注。但是,此类状态的量子状态层析成像(QST)需要进行主动频率混合操作的复杂而精确的工程[2-4],这很难扩展。为了加强这些局限性,我们提出了一种新颖的SO,它采用了脉冲塑造器和电动相调制器(EOM)来执行隆起操作,而不是以规定的方式进行混合。结合了最先进的贝叶斯统计方法[5],我们成功地验证了纠缠和重建由芯片SI 3 N 4微孔共振器(MRR)产生的BFC的全密度ma-Trix,最高为8×8- dimensional dimensional dimensials timensials Twip Qud-QudqudiT hilbert Space,最高频率为water water forsy Bins water for derumension for derumense for derumension for derumension。总体而言,我们的方法为频率可实现的操作提供了一种实验性的频率键断层扫描方法。编码单个光子的量子信息水平,称为光子Qudits [6],量子通信和网络相关的关键范围[7],例如较高的信息能力[8],增加噪声耐受性[9],以及对Bell不平等现象的强烈侵害[10]。已经在许多自由度中探索了光子量的生成和操纵,包括路径[11,12],轨道角度[13,14],频率箱[2,3,15]和时间箱[16,17]。综合光子学在缩放量子状态的复杂性[18,19]和量子操作[20]中起关键作用,并且自由度的频率程度特别有吸引力,因为芯片BFC可以以紧凑的方式产生大量的频谱纠缠的垃圾箱。
M. Beshkova*、P. Deminskyi、C.-W Hsu、I. Shtepliuk、I. Avramova、R. Yakimova 和 H. Pedersen Docent M. Beshkova 电子研究所,保加利亚科学院 72 Tzarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria 电子邮件:mbeshkova@yahoo.com P. Deminskyi 博士、Dr. C.-W Hsu,I. Shtepliuk 博士,林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 保加利亚科学院普通与无机化学研究所讲师 I. Avramova。 G.邦切夫街BL。 11,1113 索非亚,保加利亚 R. Yakimova 教授,H. Pedersen 教授 林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 关键词:AlN、SiC、石墨烯、ALD、SEM、AFM、XPS 摘要
摘要—本文报告了通过与后端工艺 (BEOL) 兼容的原子层沉积 (ALD) 工艺在鳍片结构和集成电路上涂覆 In 2 O 3 3-D 晶体管的实验演示。通过沟道厚度工程和后沉积退火,实现了具有 113 cm 2 /V · s 高迁移率和 2.5 mA/µ m 高最大漏极电流 (ID) 的高性能平面背栅 In 2 O 3 晶体管。演示了基于 ALD In 2 O 3 的高性能零 V GS 负载反相器,其最大电压增益为 38 V/V,最小电源电压 (V DD ) 低至 0.5 V。还演示了通过栅极绝缘体和沟道半导体的低温 ALD 制备的顶栅氧化铟 (In 2 O 3 ) 晶体管,其 ID 为 570 µ A/µ m,亚阈值斜率 (SS) 低至 84.6 mV/decade。然后演示了具有顶栅结构的 ALD In 2 O 3 3-D Fin 晶体管,其受益于 ALD 的保形沉积能力。这些结果表明,ALD 氧化物半导体和器件具有独特的优势,并且有望实现用于 3-D 集成电路的 BEOL 兼容单片 3-D 集成。
原子层沉积(ALD)是一种具有亚纳光度精度的固体材料层的气相方法。它是在1960年代在苏联独立发明的,名称为分子分层,并在1970年代在芬兰以原子层的外观为名。ALD依赖于以自动终止方式反应的清除步骤分隔的气态反应物的表面。本文介绍了理想ALD表面化学的基本原理,包括饱和和不可逆的反应,每个周期的生长,与ALD相关的单层概念,典型的表面反应机制,饱和度限制因素,生长模式,区域选择性ALD,生长动力学和相关性。它还讨论了与理想ALD的典型偏差。多年来,已经开发了许多不同的ALD工艺化学。可以提供一系列反应堆系统,具体取决于基材的类型和所需的生产力。ALD在实践中广泛适用,因为它以良好的可扩展性为纳米级精度,可用于沉积多种材料。近年来,对ALD的兴趣一直在强烈增长。有关ALD商业应用的最重要部门目前是半导体行业。
铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD