摘要。按需修改高迁移率二维 (2D) 材料的电子能带结构对于需要快速调整固态器件的电和光响应的各种应用具有重要意义。尽管已经提出了电可调超晶格 (SL) 势来设计石墨烯中狄拉克电子的能带结构,但设计可以与光混合的新兴准粒子激发的最终目标尚未实现。我们表明,单层石墨烯中一维 (1D) SL 势的极端调制会在费米面附近产生阶梯状电子能级,从而导致以子带间跃迁 (ISBT) 为主导的光学电导率。一个特定的、可通过实验实现的平台由位于 1D 周期性元栅极顶部的 hBN 封装石墨烯和第二个未图案化的栅极组成,可产生强烈调制的静电势。我们发现,具有大动量且垂直于调制方向的狄拉克电子通过静电势的全内反射进行波导,从而产生具有几乎等间距能级的平坦子带。表面等离子体与电控 ISBT 的预测超强耦合是产生可用光学探测的极化子准粒子的原因。我们的研究为探索具有栅极可调电子能带结构的二维材料中的极化子开辟了一条途径。
脑部计算机界面(BCI)技术提供了一种不依赖外围神经和肌肉的交流方式(Wolpaw等,2000)。全面的BCI系统涉及预处理,特征提取,信号分类和控制。这是一种直接将神经功能转化为外部产出的技术(Ramadan和Vasilakos,2017年)。最常用的脑电图(EEG)信号是事件相关的P300信号(Allison等,2020),稳态视觉引起的电势(Liavas等,1998)和运动成像(MI)信号(Pfurtscheller等人,1997年)。运动图像的最显着优势是其控制信号源自大脑的行动意图,因此不需要外部刺激(Abdulkader等,2015)。这种类型的BCI通常用于外部设备的运动控制,是当今最流行的BCI控制系统之一。但是,运动成像自发脑电图信号的信号噪声比率很低,并且受试者之间的特征有显着的单个差异。通常需要对传统的机器学习算法进行校准,以克服受试者之间的个体差异(Böttger等,2002; Saha等,2017),这一过程降低了BCI系统的效率。为了解决这一缺点,研究人员发现,使用转移学习算法来减少新用户,设备和任务的校准是有效的。近年来,转移学习使用了来自源域中的数据或信息,以帮助目标域通过使用源域(现有主题)数据来校准目标域(新主题)数据(Pan and Yang,2009)。最终,可以用带注释的几个或没有样本来判断目标域,这可以解决训练数据的基本分布与在某些条件下的测试数据之间的不匹配问题。
由于其色心缺陷具有长自旋相干性和单光子发射特性,碳化硅成为领先的量子信息材料平台之一。碳化硅在量子网络、计算和传感中的应用依赖于将色心发射高效收集到单一光学模式中。该平台的最新硬件开发专注于角度蚀刻工艺,以保留发射极特性并产生三角形器件。然而,人们对这种几何结构中的光传播知之甚少。我们探索了三角形横截面结构中光子带隙的形成,这可以作为在碳化硅中开发高效量子纳米光子硬件的指导原则。此外,我们提出了三个领域的应用:TE 通滤波器、TM 通滤波器和高反射光子晶体镜,它们可用于高效收集和传播光发射模式选择。
连续的小型化将硅技术的特征大小降低到纳米尺度,在此尺寸不太尺寸的降低不足以提高性能。使用具有先进特性的新材料已成为必须满足降低功率以提高性能的需求。拓扑绝缘子具有高电导性拓扑保护的边缘状态,对散射不敏感,因此适用于节能的高速设备。在这里,我们通过采用有效的kbh phamiltonian来评估1T'钼二硫化物的狭窄纳米带中的子带结构。高电导性拓扑保护的边缘模式,其能量位于散装带隙内的在与传统电子和孔子带相等的基础上进行了研究。 由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。 与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。 传统电子和孔子带之间的间隙也随垂直电场而增加。 两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。在与传统电子和孔子带相等的基础上进行了研究。由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。传统电子和孔子带之间的间隙也随垂直电场而增加。两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。
MMIC的微波包装的主要目标之一是保存所需的RF属性。在放大器MMIC的情况下,相对于包装的最关键属性是向前增益,输入匹配,反向隔离,增益平坦和稳定性。基于LTCC的方法是包装MMIC的有趣选择。陶瓷载体形成了用于电线粘合和翻转芯片的粘合基板,可用于整合高质量的被动剂。集成的阻止电容器可以降低组装成本,并以低额外的成本来实施诸如RF过滤和防止静电放电之类的其他功能[4]。对于模具附着,Flip-Chip由于flip-Chip跃迁的良好发电性和低寄生电感而引起了人们的注意。但是,在实践中可以看出,Flip-Chip还需要处理特定的寄生效应,这些寄生效应将芯片倒挂在金属表面上时,例如在大多数丝网键入方法中完成的金属表面[3] [5]。
自1992年引入以来,[l]微型遇到激光吸引了Sigmfkant的注意,因为高Q光源具有非常强烈的光学限制。他们的激光模式近似窃窃私语模式,这些模式取决于半导体磁盘弯曲边界处的总内部反射。在这封信中,我们描述了基于光子带隙晶体的Bragg反射,而不是半导体层之间的大介电介质不连续性和半导体层和Sur-Rounder-Rounder-Rounder-Rounder-Rounder-Rounder-Rounding低索引介质。[2]低语画廊模式的约束在很大程度上取决于磁盘边界的曲率。使用光子带隙允许横向填充和设备尺寸解耦。