当流动的性质和所需的理解使 3D 分析成为合适的工具时,就会使用 3D 分析;1D 模拟用于检查剩余系统的流体流动条件,这些条件可以通过 1D 计算捕获,并根据需要使用特定组件的内置子模型。然后,边界条件和结果会在整个系统中传递,从而实现更完整、更快速的分析。链接负责处理模型之间变量(和结果)的通信。大多数软件供应商必须使用户能够将其 3D CFD 模型(通常通过简单易用且直观的用户界面)双向链接到 1D 流体流动系统网络。然后,这个 1D 网络会分析整个系统的压力、流量和温度,并将边界条件(稳态或瞬态)直接报告回 CFD 模型。
3美国美国美国媒体推进实验室摘要气候建模联盟(CLIMA)正在开发旨在从数据中学习并使用最先进的计算技术的地球系统模型(ESM)。Clima的ESM结合了多个子模型,包括土地,大气,海洋和海冰。我们将介绍Clima的土地模型Climalm,该模拟物质地面过程。climalsm是高度模块化的,分为组成部分,包括土壤,雪,冠层和河流,每种都可以单独运行,校准或组合在一起以串联运行。CLIMALSM的模块化扩展到组件本身内的参数化,从而使新用户可以轻松添加和测试其他参数化模型。我们将使用全局数据演示如何使用全局数据来校准Climalsm,并以太阳能诱导荧光的空间观测为特定示例。关键字
从 kagome 金属 AV 3 Sb 5 ( A = K, Rb, Cs) 的 2 × 2 电荷有序相的带色散低能连续模型出发,我们表明向列性可以在这种状态下发展,其驱动力要么是三个不等价的 1 × 4 电荷涨落,先于 1 × 4 电荷有序 (CO),要么是实际的零动量 d 波电荷 Pomeranchuk 不稳定性 (PI)。我们从粒子空穴领域的 Kohn-Luttinger 理论出发进行分析,这使我们能够分别在 1 × 4 CO 开始附近和 d 波电荷 PI 附近建立吸引向列通道的发展标准。我们推导出 d 波 PI 的有效电荷费米子模型,其向列磁化率通过随机相位近似 (RPA) 总和给出。相比之下,对于有限动量 CO,RPA 方案就失效了,需要通过将 Aslamazov-Larkin 贡献纳入向列配对顶点来进行改进。然后,我们推导 1 × 4 CO 和 d 波 PI 的 Ginzburg-Landau 势,并在两种情况下获得向列转变温度 T ∼ T nem 时向列磁化的相应解析表达式。从两个电荷费米子模型开始解释以此方式获得的向列响应函数,并强调在哪些假设下可以恢复 Ginzburg-Landau 结果。最后,我们展示了向列特性的增强,其根源在于序参数与弹性变形的耦合。我们的工作建立了在某些铁基超导体中观察到的向列性与钒基 kagome 金属(其中向列相可能由自旋涨落驱动)之间的联系,在这些超导体中,电荷涨落可能导致向列性。我们提出的两种用于稳定 AV 3 Sb 5 中向列态的微观机制,即零动量 d 波 PI 和有限动量 CO 的涨落,可以通过扩散散射实验来区分,这意味着可以判断这两种理论中的哪一种(如果有的话)最有可能描述该相。这两种机制也可能与最近发现的钛基家族 A Ti 3 Sb 5 有关,在该家族中也观察到了向列性。
摘要 基于物理的数字孪生通常需要大量计算来诊断结构中的当前损伤状态并预测未来的损伤状态。本研究提出了一种新颖的迭代全局局部方法,其中局部数值模型被替代模型取代,以快速模拟大型钢结构的开裂。迭代全局局部方法将尺度从大型钢结构的操作层面扩展到开裂部件的层面。使用静态凝聚可以有效地模拟线性全局域,使用本文提出的自适应替代建模方法可以快速模拟开裂的局部域。本研究将所提出的替代迭代全局局部方法与参考模型、子模型和没有替代模型的迭代全局局部方法的求解时间和准确性进行了比较。研究发现,替代迭代全局局部法求解速度最快,结果也相对准确。
时间相关哈密顿量下的幺正演化是量子硬件模拟的关键组成部分。相应的量子电路的合成通常通过将演化分解为小的时间步骤来完成,这也称为 Trotter 化,这会导致电路的深度随步骤数而变化。当电路元件限制为 SU (4) 的子集时 — — 或者等效地,当哈密顿量可以映射到自由费米子模型上时 — — 存在几个可以组合和简化电路的恒等式。基于此,我们提出了一种算法,该算法使用相邻电路元件之间的代数关系将 Trotter 步骤压缩为单个量子门块。这会导致某些类哈密顿量的固定深度时间演化。我们明确展示了该算法如何适用于几种自旋模型,并展示了其在横向场 Ising 模型的绝热态制备中的应用。
糖尿病(DM)是一种代谢综合征,会导致持续性血糖变化的恒定发作,是一种合并症,需要得到很好的控制,以免进化为新的相关疾病。众所周知,卫生专业人员的糖尿病教育的重要性是协助和指导患有疾病并使用胰岛素的人,以便提供有关正确管理DM治疗日常实践的重要信息。因此,本研究的目的是在正确的胰岛素应用和纠正低血糖症的正确行为中逐步发展出一种简单的理解材料。教育材料的灵感来自Fanzine小册子模型,并根据临床咨询时刻在药物护理中观察到的主要需求和困难详细阐述。鉴于上述内容,狂热者被糖尿病患者的患者充分接受并遵守,在那里他们表现出了兴趣获取用于获取该材料的材料,以回答有关药物护理时口头表达的信息的来源。
张量网络方法已从基于基于基质产物状态的变异技术进行了发展,能够计算一维冷凝的晶格模型的特性到源自更精致状态的方法,例如旨在模拟二维模型物理学的预测纠缠对状态。在这项工作中,我们提倡范式,即对于二维费米子模型,矩阵 - 产品态仍然适用于比直接嵌入一维系统允许的明显更高的精度水平。为此,我们利用了费米子模式转换的方案,并克服了一维嵌入需要是局部的偏见。这种方法认真对待洞察力,即对矩阵态的多种形式和模式转换的单一多种流形,可以更准确地捕获自然相关结构。通过证明新兴模式中残留的低水平纠缠水平,我们表明矩阵态可以很好地描述基态。通过研究晶格尺寸的无旋转费用的相变高达10×10,该方法的功率被例证了。
地理位置加权的随机森林(GRF)是一种空间分析方法,它适合随机森林算法的局部范围,用于研究空间非平稳性,在依赖性变量和一组自变量之间的关系中。可以考虑到相邻的观测值,可以通过为空间中的每个观测值拟合子模型来实现后者。这项技术采用了地理位置加权回归的想法,Kalogirou(2003)。它以灵活的非线性方法对非平稳性进行建模,从而弥合机器学习和地理模型之间的差距。The main difference between a tradition (linear) GWR and GRF is that we can model non-stationarity coupled with a flexible non-linear model which is very hard to overfit due to its bootstrapping nature, thus relaxing the assumptions of traditional Gaussian statistics.GRF is suitable for datasets with numerous predictors due to the robustness of the random forest algo- rithm in high dimensionality.
摘要:Hector 是一个开源的低复杂度气候碳循环模型,可对全球和年度关键地球系统过程进行建模。本文,我们介绍了该模型的更新版本 Hector V3.2.0(以下简称 Hector V3),并记录了其新特性、新科学的实施和性能。重要的新特性包括多年冻土融化、重新设计的能量平衡子模型以及全面更新的参数化。Hector V3 的结果与大气 CO2 浓度和全球平均地表温度的历史观测结果总体上吻合良好,Hector V3 的未来温度预测与耦合模型比对计划第六阶段更复杂的地球系统模型输出数据一致。我们表明,Hector V3 是一个灵活、高性能、稳健且完全开源的全球气候变化模拟器。我们还注意到它的局限性,并讨论了该模型在科学、利益相关者和教育优先事项方面未来需要改进和研究的领域。
机械和航空航天工程罗格斯大学 - 新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国摘要提出了一种新颖的有限元模型,以研究嵌入细胞外基质中轴突的机械响应,当时纯粹在纯粹的非伴随kinematic Kinematic Bounders条件下伸长额。Ogden超弹性材料模型描述了轴突和细胞外矩阵材料的特征。对白质中的两个轴突绑定方案进行了研究,其中一个少突胶质细胞(单ol)具有多个连接的多oligodendrocyte(Multi-Ol)。在多ol绑定构型中,将产生的力随机定向为分布式神经胶质细胞在其附近的轴突周围任意包裹。在单摩尔设置中,位于中央的少突胶质细胞在附近的多个轴突。绑定力针对这种少突胶质细胞,从而导致更大的方向性和较远的应力分布。与轴突的少突胶质连接由弹簧式仪表板模型表示。髓磷脂的材料特性是少突胶质细胞刚度参数化的上限(“ K”)。提出的FE模型可以实现连接机制及其对轴突刚度的影响,以准确确定由此导致的应力状态。对不同连接场景的应力应变图的根平方偏差分析显示,轴突刚度随着束缚的增加而增加,表明少突胶质细胞在应力再分布中的作用。在单醇子模型中,对于每个轴突相同数量的连接,RMSD值随着“ K”(少突胶质细胞弹簧刚度)值的增加而增加。RMSD计算表明,对于“ K”值,与多OL相比,单摩尔模型产生的略微更硬模型。当前的研究还通过随机化和添加连接以确保更大的响应能力来解决多OL模型的潜在几何局限性。两个子模型中注意到的环状弯曲应力表明,轴突损伤积累和重复负载故障的风险。关键字:微力学,有限元素,少突胶质细胞,轴突损伤,CNS白色物质,多尺度模拟,超弹性材料,Abaqus incenclature