多体量子系统在理论和实验量子信息处理中无处不在,从凝聚态系统的模拟到良好量子纠错码的开发。近年来,我们对这些系统复杂性的数学理解取得了重大进展。在这些讲座中,我们将探讨多体量子系统的物理模型的复杂性,从物质的基态和热态到短时量子演化的输出。我们将考虑两种复杂性概念:(i) 模拟系统属性的计算难度(又名正向问题);(ii) 从访问样本(又名逆问题)中学习系统的经典描述的可学习性。
a 波兰格但斯克大学理论物理和天体物理研究所,格但斯克 80-308,波兰 b 锡根大学自然科学与技术学院,Walter-Flex-Straße 3,锡根,57068,德国 c QSTAR、INO-CNR 和 LENS,Largo Enrico Fermi 2,佛罗伦萨,50125,意大利 d 马克斯普朗克量子光学研究所,加兴,85748,德国 e 路德维希马克西米利安大学物理学院,慕尼黑,80799,德国 f 慕尼黑量子科学与技术中心,慕尼黑,80799,德国 g 波兰格但斯克大学国际量子技术理论中心,格但斯克,80-308,波兰 h 柏林工业大学固体物理研究所,柏林,10623,德国 i 数学与物理学,厦门大学马来西亚分校,雪邦,43900,马来西亚 j MTA ATOMKI Lendület 量子关联研究组,核研究所,德布勒森,4001,匈牙利
可以通过单击右上角的“页面帮助”按钮来查看此页面各个部分的一般指南。“页面help”还包括那些字段的“字段 - 特定帮助”,这些字段在该字段或以下显示了字段帮助按钮或问题。可以通过向下滚动页面保存来查看此类特定于现场的帮助。强制性字段由( *)指示。此要求不适用于禁用的字段。出于安全性/功能原因,浏览器的“后退按钮”已在ETS上使功能障碍。对于导航,请使用按钮,例如 - 上一个,下一个,重置,按每个屏幕上提供的取消。使用(»)调用中间处理的字段。建议在进行此处理时暂停进一步的数据输入。如果用户不活动30分钟(即,向服务器不提交30分钟),则会将会话计时,如果需要,用户将不得不再次登录。
工程和电子系,阿布贝克尔贝尔卡德大学技术学院,阿尔及利亚特莱姆森 doi:10.15199/48.2024.10.23 基于 AlGaN/GaN/AlGaN 的 UV LED 单量子阱数值模拟 摘要。发光二极管 (LED) 等光源是制造更坚固、转换效率更高、更环保的灯具的良好解决方案。这项工作的目的是使用 SILVACO 软件研究和模拟夹在两层之间(分别为 p 掺杂和 n 掺杂的 AlGaN)的单个 GaN 量子阱的紫外发光二极管。通过这种模拟,我们可以提取 LED 的不同特性,例如电流-电压 (IV) 特性、发射光功率、自发辐射率、辐射复合、俄歇复合、肖克利-里德-霍尔复合、光增益、光通量、光谱功率密度、整体效率。这些模拟使我们能够提取基于 p-AlGaN/GaN/n-AlGaN 的单量子阱紫外发光二极管的电学和光学特性,并检查其性能。光学器件、发光二极管 (LED)、双色灯和发光二极管przyjaznych dla środowiska。 Celem tej pracy 开玩笑 zbadanie i symulacja diody elektroluminescencyjnej ultrafioletowej z pojedynczą Studnią kwantową GaN umieszczoną pomiędzy dwiema warstwami; odpowiednio p 掺杂 in n 掺杂 AlGaN, przy użyciu oprogramowania SILVACO。此 symulacja pozwoliła nam wyodrębnić różne charakterystyki diody LED、takie jak charakterystyka prądowo-napięciowa (IV)、moc emitowanego światła、szybkość emisji spontanicznej、rekombinacja radiacyjna、重新组合 Augera、重新组合 Shockleya-Reada-Halla、wzmocnienie optyczne、strumień świetlny、gęstość widmowa mocy、ogólna wydajność。该符号与 p-AlGaN/GaN/n-AlGaN 和 p-AlGaN/GaN/n-AlGaN 的其他器件有关。 ( Numeryczna symulacja pojedynczej Studni kwantowej diody UV LED na bazie AlGaN/GaN/AlGaN) 关键词:GaN、AlGaN、紫外发光二极管、silvaco Tcad。 Słowa kluczowe:GaN、AlGaN、二极管发射器、UV、silvaco Tcad。简介 基于氮化镓 (GaN) 的固态照明技术彻底改变了半导体行业。 GaN 技术在减少世界能源需求和减少碳足迹方面发挥了至关重要的作用。根据报告,2018 年全球照明需求减少了约 13% 的总能源消耗。美国能源部估计,到 2025 年,明亮的白色 LED 光源可以减少 29% 的照明能耗。近十年来,全球的研究人员致力于 III-N 材料研究,以改进现有技术并突破 III-V 领域的极限。现在,随着最近的发展,GaN 不仅限于照明,最新创新还推动了微型 LED、激光投影和点光源的发展。这些发展将 GaN 推向了显示技术领域。基于 GaN 的微型 LED 的小型化和硅上 GaN 的集成推动了其在快速响应光子集成电路 (IC) 中的应用。将详细讨论 GaN LED 领域的大多数最新进展 [1] III 族氮化物 (GaN、AlN 和 InN) 及其合金因其优异的物理性能和在恶劣环境条件下的稳定性而被认为是各种光电应用中最有前途的半导体材料 [2, 3, 4]。如今,基于 III 族氮化物的发光二极管 (LED) 因其效率高、功耗低、寿命比荧光灯和白炽灯长而被广泛应用于世界各地的固态照明 (SSL) 应用 [5, 6]。LED 是一种更有前途的低功耗光源,可取代传统的荧光灯。除 LED 外,基于 III 族氮化物的激光二极管 (LD)、高功率电子器件、光电探测器等也是其他扩展的光电应用,这些应用也已得到展示 [7, 8]。这项工作包括对基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果以及它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。
LPDDR控制器的作用是什么?•LPDDR控制器的主要功能是将数据传输到OFF芯片LPDDR SDRAM,并从OFF芯片LPDDR SDRAM中检索数据,以供SOC使用?•通过外围接口(寄存器)管理的配置,控制和状态•通过DFI通过LPDDR PHY与LPDDR SDRAM进行通信
在成功的测试中,量子系统的向量和蝎子UA和空中客车的另外两台多用途无人机部署在群体中。实时合并了所有无人机的侦察数据,以形成联合情境图片,并集成到空中客车“ Fortion Joint C2”战斗系统中。此外,矢量无人机证明了他们在GPS贬义的条件下(GNSS拒绝)(例如在乌克兰发现的)中自主执行诸如联合侦察和目标获取等任务的能力。这强调了AI提高UAS的弹性的能力,即使在困难条件下,也可以确保自主运行。
b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'
工作流程:1。使用统一门𝑆(𝑥)将数据嵌入量子系统2。使用参数化门的块(称为ANSATZ)作为电路3的可训练部分。在系统4上进行测量。在系统4上进行测量。在经典计算机上使用优化器来更新参数