1 莫斯科国立土木工程大学,129337,Yaroslavskoe shosse, 26,莫斯科,俄罗斯 2 电子工程系,GRIET,Bachupally,海得拉巴,特伦甘纳邦,印度。 3 机械工程系,KG Reddy 工程技术学院,Chilkur(Vil),Moinabad(M),Ranga Reddy(Dist),海得拉巴,500075,特伦甘纳邦,印度。 4 奇特卡拉大学研究影响与成果中心,拉贾普拉- 140417,旁遮普,印度 5 北阿坎德邦大学,德拉敦 - 248007,印度 6 洛夫利专业大学,帕格瓦拉,旁遮普,印度 7 奇特卡拉研究与发展中心,奇特卡拉大学,喜马偕尔邦 - 174103,印度 8 计算机工程与应用系,GLA 大学,马图拉-281406(UP),印度 9 计算机技术工程系,伊斯兰大学技术工程学院,纳杰夫,伊拉克 通讯作者:nidziyen@mgsu.ru
摘要:随着先进制造对精确微型和纳米级图案的不断增长的要求,迫切需要对EBL过程的优化。当前的优化方法涉及GA与GWO或PSO与GWO等组合,而GWO与不良的探索 - 探索折衷折衷相困难,因此融合到次优溶液或溶液的不足。通过创新的自适应狼驱动的蜂群进化方法克服了上述挑战,使GA,PSO和GWO的优势协同以进行EBL的优化过程。从GA中产生多样化的解决方案人群是AWDSE的开始,以确保搜索空间中的广泛探索。此外,使用GWO的基于角色的分类将解决方案分层分类为不同的角色:Alpha,Beta,Gamma,Delta。的解决方案(Alpha,beta)通过基于PSO的更新来完善,这些更新通过更新解决方案来利用搜索空间,而解决方案排名较低(Gamma,delta)则受到GA驱动的交叉和突变操作,以维持多样性和探索。GA的进化操作与PSO粒子更新之间的自适应切换肯定是由GWO的领导动力驱动的,GWO的领导动力可以使多样化强化的更密集平衡,从而可以提高收敛精度和速度。实验结果证明,AWDSE能够提高约18%的临界维度,而延迟时间的收缩率达到12%,效果超过了GA-GWO和PSO-GWO的传统方法。这一进步强调了AWDSE可以显着提高EBL效率和准确性的可能性,而远离纳米制造过程的景色却越来越快。
分析大数据,尤其是医学数据,有助于为患者提供良好的医疗保健并面临死亡的风险。COVID-19大流行对全世界的公共卫生产生了重大影响,强调了对风险预测模型的需求。机器学习(ML)技术在分析复杂的数据模式和预测疾病预后方面已显示出希望。这些技术的准确性受到更改参数的很大影响。超参数优化在证明模型性能中起着至关重要的作用。在这项工作中,使用粒子群优化(PSO)算法有效地搜索超参数空间并通过识别可以提供最高精度的最佳超级参数来提高机器学习模型的预测能力。在本研究中使用了与COVID-19病例相关的各种临床和流行病学特征的数据集。使用各种机器学习模型,包括随机森林,决策树,支持向量机和神经网络,用于捕获数据中存在的复杂关系。为了评估模型的预测性能,采用了精度。实验发现表明,估计Covid-19风险的建议是有效的。与基线模型相比,优化的机器学习模型的性能更好,并产生了更好的结果。关键字
为了解决无线传感器网络因资源有限、开放部署、无人值守等特点导致节点定位过程中存在安全隐患的问题,本文结合目前WSN节点提出一种主流的定位算法,通过降低网络定位中的误差,使无线传感器网络定位技术发挥到实用效益,实现基于节点资源和有限容量的WSN发射源定位。将一些定位技术应用到发射源定位中,取得了一些有意义的结果。针对无线传感器网络中主要节点定位算法存在的问题,深入研究定位技术的功耗、定位精度等问题,降低定位误差。实验表明,在节点发送不同状态时,保持节点数150不变,通信半径不变,环境输出不变,网络中的骨干节点数可以改变,两种算法经过多次仿真实验,都可以看到定位方案受到锚节点部分影响的定位结果曲线。
摘要:随着低碳经济的不断发展,利用可再生能源替代化石能源的能源结构调整已成为必然趋势。为提高可再生能源在电力系统中的比例,提高可再生能源制氢发电系统的经济性,本文基于电化学储能和氢储能技术,建立了风光互补氢储能系统运行优化模型,采用自适应模拟退火粒子群算法进行求解,并与标准粒子群算法进行了比较。结果表明,改进算法求解的日前运行方案全天可节省系统运行成本约28%。算例分析结果表明,建立的模型充分考虑了系统中设备的实际运行特点,在分时电价机制下,通过调节从电网购入的电量和蓄电池的充放电功率,可以减少风能和太阳能的浪费。系统日前调度优化在保证制氢功率满足氢气需求的同时,实现了日系统运行成本最小化。
20 世纪 90 年代中期,提出了两种具有里程碑意义的元启发式算法:粒子群优化和差分进化。它们的初始版本非常简单,但迅速引起了广泛关注。在过去的四分之一世纪中,这两种优化算法的数百种变体已被提出并应用于几乎所有科学或工程领域。但是,到目前为止,尚未对这两种方法的性能进行更广泛的比较。在本文中,对十种粒子群优化和十种差分进化变体进行了比较,从 20 世纪 90 年代的历史变体到 2022 年的最新变体,这些变体在众多单目标数值基准和 22 个实际问题上进行了比较。平均而言,差分进化算法明显优于粒子群优化算法。差分进化相对于粒子群优化的优势与流行度相矛盾:在文献中,粒子群优化算法的使用频率是差分进化算法的两到三倍。粒子群优化比差分进化表现更好的问题确实存在,但相对较少。虽然这个结果可能是选择特定变体、实验设置或用于比较的问题的结果,但粒子群优化变体可能需要重新考虑算法理念,以使其更具竞争力。
摘要。针对节能和最佳WSN的最佳部署问题,本文建立了最佳覆盖模型。同时,提出了一种基于粒子群理论和量子的粒子群优化的节能部署算法。准物理策略,即准实体和准库仑力,在量子粒子群优化算法的位置进化方程中引入,这可以合理地调节传感器节点之间的距离。此外,该算法可以以低区域重复速率获得快速优化。此外,对WSN节点的传感半径进行动态调整,以最大程度地减少节点的能量消耗。模拟结果表明,与传统的粒子群和量子性粒子群群优化方案相比,所提出的算法在网络覆盖率和收敛速度方面具有更好的性能。同时,该算法在减少WSN中的节点能量消耗方面具有一定的优势。
最大子群和 Hermann 定理。 结构相变中的域结构分析。 群-子群对的 Wyckoff 位置关系。 空间群的超群。BCS:在研究空间群的群-子群关系时,使用计算机数据库和计算机工具进行动手实践(SUBGROUPGRAPH、SUBGROUPS、HERMANN、WYCKSPLIT、MINSUP、SUPERGROUPS)。可选课程:提问和讨论(18:00 - 19:00)
确保建筑项目是安全的,例如堆叠结构,需要考虑在此期间免疫结构。桩定居点(PS)是一个重要的项目问题,并且正在引起广泛关注,以防止在施工开始之前发生故障。几个用于估算桩运动的项目可以帮助了解加载阶段的项目的观点。在PS模拟中使用了最聪明的策略用于桩运动的数学计算。因此,在本文中,考虑了精确的桩运动计算,考虑了开发的框架操作支持向量回归(SVR)以及亨利的气体溶解度优化(HGSO)和粒子群优化(PSO)。优化器的使用是调整SVR的一些内部设置。选择了使用已发达的SVR-HGSO和SVR-PSO结构的陆地岩石特征来研究基于土地岩石特征的桩的运动。使用五个指标来评估每个模型的性能。这项研究的主要目的是以两个开发模型的形式评估人工智能方法,以使用混合优化的框架模拟桩沉降速率。建模的R 2在0.99水平上类似地获得。SVR-PSO的RMSE分别出现超过两倍的SVR-HGSO,分别为0.46和0.29 mm。此外,测试阶段结果显示,SVR-HGSO的性能较高,MAE指数为0.278,比另一个索引低57.10%。OBJ通过0.283mm级别计算的SVR-HGSO证明了准确的建模。
1.B.1. 使用遗传算法进行监督学习的有效特征选择(Hilda & Rajalaxmi,2015) 1.B.2. PHGA:用于二元分类特征选择的混合遗传算法(Khiabani & Sabbaghi,2017) 1.B.3. 使用改进的遗传算法和经验模态分解进行 ECG 信号处理的特征选择(Anderson,2015) 1.B.4. 用于支持向量机同时进行模型和特征选择的多目标遗传算法(Bouraoui、Jamoussi & BenAyed,2018) 1.B.5. 基于遗传算法的亲属关系验证特征选择(Alireza-zadeh、Fathi & Abdali-Mohammadi,2015) 1.B.6. 1.B.1. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.2. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.3. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.4. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.5. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.6. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.7. 基于遗传算法的特征选择结合双重分类用于增生性糖尿病视网膜病变的自动检测 (Welikala, Fraz, Dehmeshki, Hoppe, Tah, Mann, Williamson, & Barman, 2015b) 1.B.8. 基于增强遗传算法的混合特征选择用于文本分类 (Ghareb, Bakar, & Hamdan, 2016) 1.B.9. DWFS:一种基于并行遗传算法的包装器特征选择工具 (Soufan, Kleftogiannis, Kalnis, & Bajic, 2015) 1.B.10.基于遗传算法的特征选择方法用于高效的文本聚类和文本分类 (Hong, Lee, & Han, 2015) 1.B.11. 具有积极突变的遗传算法用于 BCI 特征空间中的特征选择 (Rejer, 2015)