我们针对 Z nmk 中的隐子群问题提出了一个多项式时间精确量子算法。该算法使用模 m 的量子傅里叶变换,不需要对 m 进行因式分解。对于光滑的 m ,即当 m 的素因数为 (log m ) O (1) 时,可以使用 Cleve 和 Coppersmith 独立发现的方法精确计算量子傅里叶变换,而对于一般的 m ,可以使用 Mosca 和 Zalka 的算法。即使对于 m = 3 和 k = 1,我们的结果似乎也是新的。我们还提出了计算阿贝尔群和可解群结构的应用程序,它们的阶具有与 m 相同(但可能是未知的)素因数。可解群的应用还依赖于 Watrous 提出的用于计算子群元素均匀叠加的技术的精确版本。