Loading...
机构名称:
¥ 3.0

已经投入了很大的效果,用于研究量子化学[1-4],凝结物理学[5-7],宇宙学[8-10]以及高能量和核物理学[11-16]的问题[11-16],具有数字量子计算机和模拟量子模拟器[17-22]。一个主要的动机是加深我们对密切相关的多体系统(例如结合状态的光谱)的基态特性的传统棘手特征的理解。另一个是推进散射问题的最新技术,这些问题提供了有关此类复杂系统的动态信息。在这项工作中,我们的重点将放在相对论量子场理论中为高能量散射和多粒子产生的量子算法的问题。我们的工作是在量子铬动力学(QCD)中提取有关Hadron和Nuclei的性能的动态信息的有前途但遥远的目标。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。量子设备有可能克服经典计算机在解决上述许多问题时的局限性。目前的限制是,散射问题涉及大量的空间(动量)和时间(能量)尺度,并要求对大量(局部)量子型操作员进行量子模拟。当今NISQ ERA技术仅限于几十个未纠正的量子台上的NISQ ERA技术具有挑战性[22]。正如约旦,李和普雷基尔[44,45]在精液论文中所讨论的那样,量子模拟相对论量子型理论中的散射问题需要晶格离散化,而在骨质理论的情况下,则是field eld opertor的局部希尔伯特空间的截断。从广义的重归化组(RG)的意义上[46]的意义上,可以将这种数字化视为定义低能量效能理论的定义。我们将在这里争论,从这个角度来看,数字化方案不一定需要基于本地运算符的分解,而是更多

量子的单粒子数字化策略...

量子的单粒子数字化策略...PDF文件第1页

量子的单粒子数字化策略...PDF文件第2页

量子的单粒子数字化策略...PDF文件第3页

量子的单粒子数字化策略...PDF文件第4页

量子的单粒子数字化策略...PDF文件第5页

相关文件推荐

2023 年
¥4.0