Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
胰腺癌是一种高度侵略性的恶性肿瘤,近年来变得越来越普遍。尽管在包括手术,放射疗法,生物疗法和靶向治疗在内的强化治疗方式方面取得了进步,但胰腺癌患者的总生存率并没有明显改善。这可能归因于阴险的发作,未知的病理生理学和疾病预后不良。因此,必须识别和开发对胰腺癌的更有效和更安全的治疗方法。肿瘤免疫疗法是手术,放疗和化学疗法后的新的和第四个抗肿瘤疗法的支柱。近年来对各种恶性肿瘤的免疫疗法的使用取得了显着进步。在治疗胰腺癌方面,也取得了突破。本综述描述了免疫检查点抑制剂,癌症疫苗,收养细胞疗法,溶瘤病毒和基质止血疗法的进展,用于治疗胰腺癌。同时讨论了一些新的潜在生物标志物和胰腺癌的潜在免疫疗法组合。也已经阐明了各种免疫疗法的分子机制,并突出了它们的临床应用。还讨论了与免疫疗法和提议克服这些局限性有望的拟议策略相关的挑战,目的是为胰腺癌的免疫疗法提供新的见解。
在深度无弹性正面散射中,使用与HERA的H1检测器收集的数据测量Lepton-Jet方位角不对称性。When the average transverse momentum of the lepton-jet sys- tem, lvert ⃗ P ⊥ rvert , is much larger than the total transverse momentum of the system, lvert⃗q ⊥ rvert , the asymmetry between parallel and antiparallel configurations, ⃗ P ⊥ and ⃗q ⊥ , is expected to be gener- ated by initial and final state soft gluon radiation and can be predicted using perturbation theory.量化不对称的角度特性提供了对强力的额外测试。研究不对称性对于通过横向动量依赖(TMD)Parton分布函数(PDFS)产生的固有不对称的未来测量很重要,其中这种不对称构成了主要背景。方位角不对称的力矩是使用机器学习方法来测量不需要归安宁的。
肺癌通常转移到淋巴结,大脑,肝脏,骨骼和肺部。肺癌的乳腺转移并不常见。 在先前关于肺癌引起的乳腺转移的报道中,与原发性乳腺癌的分化或其他器官的转移具有挑战性[6-8]。 在恶性乳腺肿瘤中,转移性乳腺肿瘤的发生率很低。 同样,乳外恶性肿瘤的乳房转移很少见,乳腺癌的主要转移部位被认为是恶性黑色素瘤(29.8%),肺癌(16.4%),妇科癌(12.7%)(12.7%)或肠道肿瘤(9.9%)[9.9%] [9] [9]。 以前关于肺癌乳腺转移的大多数报道都是关于单侧发生的孤立转移性肿瘤[10];因此,散落的双侧乳腺转移酶的情况很少见。肺癌的乳腺转移并不常见。在先前关于肺癌引起的乳腺转移的报道中,与原发性乳腺癌的分化或其他器官的转移具有挑战性[6-8]。在恶性乳腺肿瘤中,转移性乳腺肿瘤的发生率很低。同样,乳外恶性肿瘤的乳房转移很少见,乳腺癌的主要转移部位被认为是恶性黑色素瘤(29.8%),肺癌(16.4%),妇科癌(12.7%)(12.7%)或肠道肿瘤(9.9%)[9.9%] [9] [9]。以前关于肺癌乳腺转移的大多数报道都是关于单侧发生的孤立转移性肿瘤[10];因此,散落的双侧乳腺转移酶的情况很少见。
光子学方法基于介电和半导体结构中E-和H-型MIE共振的激发已成为过去二十年来研究活动的对象。这些非质子共振技术被认为是创建新的超材料[1-6]并增加光电设备的量子产率[7,8]的途径。在这一领域的一个重要问题是可以设计MIE共鸣的特性。为实施MIE共振工程,可以在介电材料中实施从无定形到结晶状态的可逆过渡。特别是,可以使用结晶和进一步的激光诱导的这些SB 2 S 3谐振器[9]来实现SB 2 S 3纳米磁盘阵列中的可逆MIE共振调节。是一个理论上考虑了球形粒子的光散射,其介电常数在双倍频率下相对于入射光进行了调制,这表明有可能控制球体的MIE共振[10]。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
摘要Apollo Lunar地震数据中看到的强烈地震散射是最具特征的特征之一,这使地震信号与在地球上观察到的信号大不相同。散射被认为归因于地下异质性。虽然月球的异质结构反映了过去的地质活动和进化过程,但详细的描述仍然是一个悬而未决的问题。在这里,我们提出了通过完整的3D地震波传播模拟得出的上月壳中的地下异质性的新模型。我们的模拟成功地重现了阿波罗地震观测,从而导致了月球散射特性的重大更新。结果表明,月球的散射强度比地球上异质区域的散射强度高约10倍。量化的散射参数可能会使我们对月球的表面演化过程有限制,并使比较研究能够回答一个基本问题,即为什么地震特征在各种行星体上有所不同。
有效和宽带向前散射对于元原子来说是重要的。强的竞争者包括具有定制多极含量的胶体纳米镜,以达到抑制后散射的适当干扰。我们考虑了由一百多个银纳米斑点组成的密集的等离子球。数值模拟提供了对多极矩在散射行为中起作用的作用的充分理解。它们是使用乳液干燥制造的,并具有光学特征。在整个可见范围内证明了强度和有效的前向散射。具有相等振幅和相位的电和磁偶极子共振。这种等离子球可以用作底部跨表面应用的元原子。
摘要:我们通过位于平坦介电底物上的平坦石材条的无限光栅考虑了电子极化平面波的散射和吸收。为了构建一个受信任的全波无网格算法,我们将散射问题扔给了双重系列方程,并基于离散傅立叶变换的倒数来执行其分析正则化。然后,对于未知的floquet谐波振幅,该问题将减少到Fredholm 2-Kind矩阵方程。因此,由Fredholm定理保证了所得代码的收敛性。数值实验表明,这种构型是频率选择性的跨表交或一个周期性光子晶体。如果光栅周期和底物厚度是微米大小的,则这种空腔的共振频率在Terahertz范围内。在电子极化情况下不存在等离子体模式,这些共振对应于底物的低Q板模式,并因光栅的存在而略微扰动,并且整个弹药的超高Q晶格模式作为周期开放式腔。我们使用我们的全波数值代码量化了它们的效果,并为晶格模式频率和Q因子得出渐近分析表达式。