图1:(a)TPC的几何形状以及相互空间和相关的高对称点的表示。(b)每个原始细胞内两个孔的TPC的分散图(黑色)或不同的(红色)半径1和R 2。(c)浆果曲率和山谷Chern数模拟了为疾病的TPC(r 1 = 180 nm和r 2 = 80 nm)。(d)边缘模式的色散曲线(实心蓝线)沿着胡须界面在两个半偶然的镜像对称TPC之间,平行于γk方向(浅蓝色背景表示投射的散装模式)。实心红线显示无限TPC的分散曲线。插图比较界面的FBZ(厚蓝线与长度为2π/b 0)和无限TPC的FBZ。(e)模拟(左图)中使用的典型单元电池和边缘模式的磁场振幅的分布(右图)。
共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
摘要。辐射传递方程是在大气温度温度上的温室气体效应的建模的核心和模拟的核心。为了处理云的逼真散射,我们需要处理极化并与向量辐射式跨方程式一起工作。在本文中,我们提出了一种基于积分数量和一种迭代方法的公式,该方法的收敛性和单音性被证明是雷利(Rayleigh)散射和极化的散射,即具有2个偏差方程的非线性系统,该方程与2个变量,an- gle and gle and glete and-Gle and flasile coulial coupl and频繁及其频繁的等方程式,并具有频繁的方程式。 ture。的存在和解决方案的唯一性被证明,并使用从卫星测量中获取的参数给出了现实的数值模拟。
临界维度(CD)控制在半导体行业至关重要,并且随着光刻限制不断推动以达到小于10 nm的技术节点而变得更具挑战性。为了确保过程的质量和控制,有必要探索新的计量技术。从这个意义上讲,临界小角度X射线散射(CDSAXS)已被确定为确定具有子纳米准确精度的线光栅的平均形状的潜在候选者。在本文中,我们将CDSAXS结果基于光学关键维度(OCD),临界尺寸扫描电子显微镜(CDSEM)和透射电子显微镜(TEM)测量,以前从制造线的工业计量工具和表征实验室中收集的先前从工业计量工具中收集的测量值。重点放在用于CDSAXS的模型以及如何改进的模型上。我们讨论了所有这些多尺度和多物理技术之间的差异,并质疑我们比较它们的能力。
几十年来,散射技术一直被广泛用于表征光学质量表面(即粗糙度远小于照明波长的表面)。散射光在许多领域都至关重要,例如,对于光学滤波器的最终性能、天文学和空间应用的先进光学系统或微电子学。对于所有这些应用,降低粗糙度和表面缺陷都是一个主要问题,而抛光技术的改进使得制造粗糙度低于几分之一纳米的表面成为可能。与此同时,测量技术也得到了发展,可以可靠地检测这些表面的特性,而光散射已被证明是一种非常有效、快速且非侵入性的方法,可以表征所有所需的参数。如今,角度分辨散射仪 [16-19] 可以在整个角度范围内以及从可见光到近红外的宽光谱范围内实现低于非吸收朗伯模式的 8 个十年的动态。
在这项研究中,我们开发了一个基于单光光学陷阱的表面增强拉曼散射(SERS)光氟分子指纹光谱检测系统。该系统利用单光束光学陷阱在光氟芯片中浓缩游离银纳米颗粒(AGNP),从而显着提高了SERS性能。我们使用COMSOL模拟软件研究了锥形纤维内的光场分布特性,并建立了MATLAB模拟模型,以验证单光束光学陷阱在捕获AGNP方面的有效性,证明了我们方法的理论可行性。为了验证系统的粒子捕获功效,我们通过实验控制了光学陷阱的On-Own状态,以管理颗粒的捕获和释放。实验结果表明,捕获状态中的拉曼信号强度明显高于非捕获状态,这证实了单光束光学陷阱有效地增强了光氟硅烷检测系统的SERS检测能力。此外,我们采用了拉曼映射技术来研究捕获区域对SERS效应的影响,表明激光捕获区域中分子指纹的光谱强度得到了显着改善。我们以10 -9 mol/l的浓度和农药Thiram的浓度成功地检测到了晶体紫罗兰色的拉曼光谱,并在10 -5 mol/L的浓度下进一步证明了单光束光学TRAP在增强分子手指纹状体识别能力的能力的能力。作为集成光电传感系统的关键组成部分,在本研究中开发的光捕获仪具有与便携式高功率激光器和高性能拉曼光谱仪的集成潜力。这种集成有望推进高度集成的技术,并显着提高光电传感系统的整体性能和可移植性。
散射实验是探索基础物理的成熟工具。特别是,碰撞实验可以产生高能和稀有粒子,从而研究它们的相互作用。对此类过程的解释需要精确的理论预测,而这往往涉及无法从图解微扰论中提取的贡献。例如,对于强子碰撞就是这种情况,量子色动力学 (QCD) 的非微扰效应可能发挥重要作用 [1]。解决此类非微扰区域的最有力工具是格点规范理论 (LGT),即规范场论的离散形式 [2]。使用量子蒙特卡罗 [3,4] 等先进的数值方法,LGT 已经能够成功探索强耦合现象,例如 QCD 中的强子谱,但实时动态是一个挑战。尽管最近取得了进展 [5],但目前还无法精确计算散射过程,这也是促使人们寻找替代技术的原因之一 [6]。近年来,量子方法揭示了探索基础物理的潜在替代方法(参见 [7 – 13] 的评论)。他们的核心重点是 LGT,它似乎也是对
如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准
摘要 - 重新研究已将反向散射机制集成到现有的无线网络中,旨在使反向发送器能够使用常规的无线协议直接通信。这将允许在当今网络基础架构中进行低功耗无线通信。然而,缺乏本地支持在传统基础架构内无缝构成反向散射发射器方面构成了挑战。本文介绍了EmScatter,这是一种专为商品移动设备设计的反向散射系统。它消除了对外部激发源与收发器同行分开的需求。所提出的方法利用该设备作为激发信号发出的固有电磁辐射(EMR)信号,有效地将商品移动设备转换为反向散射读取器。用户可以随时随地使用其移动设备与反向散射标签进行通信。
摘要。我们解决了平面波在由DC横向磁场控制的铁氧体1D磁磁晶体上散射的问题。基于Floquet-Bloch理论的混合边界条件的山山方程溶液以分析形式获得。明确发现色散方程及其根。根据铁氧体层的材料参数,对结构的分散性质进行分析。确定具有有限周期数量的陀螺仪的传输和反射系数。考虑了两个特征情况:旋转层有效渗透性的正值和负值。在晶体时期确定电磁场组件的空间分布的表达。结果提供了对具有控制旋转元素的多层介质中电磁波传播行为的更深入的理解。此外,获得的分析表达式简化了这种复杂介质中波过程的分析。
