在现代社会中到处都可以找到技术。大多数人始终都有电子设备,甚至有两个设备。在2000年代初期或之前出生的孩子获得技术的机会有限。即使访问有限,仍然有机会观看电视,打电话并进行研究,但是这些机会在任何时间可以使用的袖珍设备中都无法使用。在2007年iPhone越来越受欢迎之后,拥有智能手机和平板电脑等电子设备的广泛普及(Verizon,2023年)。以及全屏设备游戏机在质量上开发,并经常被年轻男孩使用。随着技术的兴起,新一代的儿童从头到尾就以屏幕的屏幕在屏幕上长大(Rathnasiri等,2022)。在自己面前有一个屏幕使孩子想知道立即回答的每个问题。他们还为他们提供了不断的娱乐,这意味着他们在整个日常生活中都受到刺激。
使用低功耗电子设备设计低功耗嵌入式系统指南 YASHU SWAMI 印度苏兰帕莱姆阿迪亚工程学院 (A) 电子与计算机工程系 摘要:低功耗嵌入式系统 (LPES) 和物联网产品的设计可能包括多种电源管理技术,也可能包含有助于降低功耗的复杂片上功能。嵌入式系统的电源管理和低功耗也是通过复杂的算法实现的,每个低功耗系统 (LPS) 都可能需要多种方法来避免使用额外的电池电量。在创建必须极其节能且同时提供必要计算能力的 LPES 时,我们可以使用多种策略。这完全取决于必须满足的设计规范。然后,如果可行的话,从低功耗电子设备 (LPE) 中选择合适的低功耗组件。在研究和审查了多个 LPES 实时项目后,我们列出了一些可用于实现嵌入式系统低功耗设计和功耗的策略。在分析了大量 LPES 实时项目之后,我们列出了使用 LPE 进行嵌入式系统低功耗设计的几种方法。LPES 设计还有其他好处。LPES 产生的热量更少,对环境更有利。对于 1000 个 LPES 设备,每个设备节省一瓦功率等于一千瓦时,即我们可以节省 1 单位电力。低功耗设计可提高组件和系统的可靠性。嵌入式系统的使用寿命得到延长。在许多情况下,LPES 设计可能会降低生产成本。所选的 LPE 组件更实惠、更便宜。因此,低瓦数电源、LPES 设计更简单、更便宜。关键词:- 低功耗嵌入式系统、低功耗设计、低功耗 PCB、低功耗电子元件、电源管理、电池管理、算法优化。
最终,投资组合优化的目的是确定最佳投资,从而使回报和风险之间的权衡最大化。此二次优化问题的经典表述具有精确或启发式的解决方案,但是随着市场维度的增加,复杂性扩大。最近,研究人员正在评估通过采用量子计算来面对复杂性缩放问题的可能性。在本文中,使用变异量子本质量(VQE)解决了问题,这原理是非常有效的。这项工作的主要结果包括定义要设置的最佳超参数,以便在实际量子计算机上执行VQE的投资组合优化。尤其是考虑了约束二次问题的一般公式,该公式通过变量的二进制编码以及在目标函数中包含约束,将其转化为二次不受限制的二进制优化。这将转换为一组量子运算符(Ising Hamiltonian),其最小特征值由VQE找到,并对应于最佳解决方案。在这项工作中,分析了该过程的不同超参数,包括通过模拟器和实际量子计算机的实验进行的不同的ANSATZE和优化方法。实验表明,解决方案质量对精度尺寸的量子计算机和正确的超参数有很强的依赖性,并且有了最佳选择,量子算法在实际量子设备上运行的量子算法运行在实时量子设备上非常接近确切的解决方案,即使没有误差计算技术,也没有强大的融合速率,即使是具有强大的融合率。此外,对于小型示例,在不同的实际量子设备上获得的结果显示了解决方案质量与量子处理器尺寸之间的关系。的证据允许结论是解决量子设备上的实际投资组合优化问题的最佳方法,并确认在现有方法方面,一旦量子硬件的尺寸将有限地高,就可以用较高的效率解决它们。
高性能航天计算 • 具有矢量处理能力、更高性能和灵活性的抗辐射通用处理器,可适应特定任务的性能、功率和容错需求 • 具有抗辐射能力、更大容量和更高性能的高级航天内存 • 智能、高效的多输出负载点 (POL) 电源转换器 • 高性能单板计算机 (SBC),包含高性能通用处理器、高级内存、负载点转换器和实时操作系统,采用行业标准外形和总线架构 • 具有矢量支持的系统软件工具,可利用先进多核处理器的功能并管理其复杂性
由于电子零件预期的功率耗散和功率密集,以满足未来的太空任务应用,因此将需要进行热控制硬件和技术的进步,以保持任务温度和可靠性。这样的应用程序正在冷却与空间激光器相关的电子产品。激光冷却要求可以通过单相热传输到面向空间的散热器的情况下满足,并可能包含相变材料。未来的激光冷却要求将需要更高级的硬件,例如微通道,喷雾冷却和喷气撞击。本报告描述了与当前和未来激光冷却需求相关的热控制硬件,并提供了满足未来激光冷却目标的建议。
摘要:养殖鱼和壳鱼的病毒感染代表了水产养殖业的一个主要问题。一种潜在的控制策略涉及通过特异性双链RNA(DSRNA)口服递送病毒基因表达的RNA干扰。在先前的工作中,我们已经表明,可以在可食用的Microalga衣原体的叶绿体中产生重组DSRNA,并用于控制虾中的疾病。在这里,我们报告了抗病毒DSRNA产生的显着改善及其用于保护虾免受白斑综合征病毒(WSSV)的用途。开发了一种新的DSRNA合成策略,该策略使用内源性RRNS启动子的两个收敛拷贝驱动叶绿体中WSSV基因元件的两个链的高级转录。定量RT-PCR表明,〜119 ng dsRNA是每升转基因microalga产生的。这相对于我们先前的报告,DSRNA的增加约为10倍。在对病毒挑战之前喂给虾幼虫时,评估了工程藻类的预防WSSV感染的能力。相对于阴性对照(<10%的存活率),含有DSRNA的干藻的虾的存活显着增强(〜69%存活)。发现该新的DSRNA生产平台可以用作水产养殖的低成本,低技术控制方法。
可重新配置或可编程的光子设备正在迅速增长,并且已成为许多光学系统的组成部分。通过电刺激选择性调节电磁波的能力对于从数据通信和计算设备到环境科学和空间探索的各种应用的发展至关重要。基于粉红色的相变材料(PCM)是可重新配置光子学的最有前途的材料之一,因为它们在不同的固态结构相之间具有较大的光学对比度。尽管已经致力于准确地模拟基于PCM的设备的努力,但是在本文中,我们突出了三个重要方面,这些方面经常逃避先前的模型,但对这些设备的热和相转换行为产生了重大影响:融合的触发剂:热容量的触发,玻璃过渡时的热量变化,以及液态频率PCM的热电导率。我们进一步研究了在PCM设备中切换能量缩放的重要主题,这也有助于解释为什么在电子PCM记忆中长期以来一直忽略了上述三种效应,但仅在光子学中变得很重要。我们的发现提供了洞察力,可以促进基于PCM的光子设备的准确建模,并可以告知更有效的可重构光学元件。
由于公众对可持续性的推动,纸电子产品的兴起已经加速。电子废物。在本报告中,可以证明导电聚合物聚(3,4-乙二醇氧噻吩)(PEDOT),多吡咯和聚噻吩可以通过丝网印刷与纸张底物上的蒸气相聚合结合并进一步掺入功能性电子成分来合成。高模式分辨率(100μm),PEDOT显示出令人印象深刻的板电阻值。PEDOT作为导电电路并在全印刷的电致色素显示器中作为导电电路。导电聚合物电路允许发射功能发光二极管,而电致色素显示器可与使用PEDOT在塑料底物上使用PEDOT相当。
1.航空学是指旨在在地球大气层中建造和操作飞机的科学和技术。2.在航空运输领域,安全是系统的安全属性,旨在保护系统免受故障和故障的影响。英文术语是safety。3.航空电子设备是飞机上的所有电子、电气和计算机设备。因此,它是航空领域的一个子集:航空电子设备仅涉及飞机的内部,而航空学则涵盖航空电子设备领域及其环境,包括陆地控制和导航装置。4.在航空运输领域,安全是系统的免疫属性,它