基于计算复杂性的现代通信系统的安全性越来越多,特别是随着量子计算机的快速开发。幸运的是,量子通信能够在通信过程中提供信息理论安全性[1,2]。Quantum Secret共享(QSS)是多部分量子通讯网络中最重要的原始人之一,它使一个受信任的方可以在只能集体重建秘密的几位参与者中分发一个秘密。QSS一直是一个积极的研究领域,研究人员致力于完善和提高其能力。通过使用后选择的Greenberger- Horne-Zeilinger纠缠而提出了测量设备不依赖的方案[3]。最近已经分析了参与者的攻击[4]针对特定的确定性协议。最近,Shen等人。[5]利用相干状态的相位调制来编码其QSS方案中的逻辑位,从而大大降低了实验复杂性。作者使用量子键分配安全性分析的方法来证明该方案即使对于内部参与者,也可以防止连贯攻击。通过使用与双场量子键分布相同的单光子干扰测量技术,该协议达到了
基于ML的QKD系统参数优化解决方案是在密钥生成之前先预先优化算法。图7.2显示了基于ML的QKD系统参数优化的图。首先,对输入数据进行采样以选择无法由用户控制的物理参数的随机组合,并使用本地搜索算法来计算其相应的优化参数值,该值可以由用户调整。使用选定的ML模型将获得的物理参数值输入到ML模型培训师中。训练后,输出的n组预测参数值。通过将经典算法获得的关键率与基于预测参数值的密钥速率进行比较,比较结果回到了ML模型培训师。其次,当QKD系统需要参数优化时,将输入实时数据,并在应用ML函数后输出最佳参数值。最后,配置参数将输入到QKD系统中以完成参数优化。
简介:激光烧蚀元素同位素光谱仪系统 (LABEISS) 是一种面包板仪器,具有两种主要技术——激光诱导击穿光谱 (LIBS) 和激光烧蚀分子同位素光谱 (LAMIS)。此外,LABEISS 还能够将拉曼光谱、激光诱导荧光和被动反射作为支持技术。LIBS 已成为行星探索的主要技术,最著名的是 ChemCam 和 SuperCam 仪器,后者最近搭载在 NASA 的 Mars2020 毅力号探测器上 [1, 2, 3]。LIBS 是一种快速获取地质样品、土壤样品和表面清洁(使用重复激光烧蚀)中主要和次要元素分析结果的方法。与 LIBS 相比,LAMIS 基于分子发射的同位素位移(所谓的同位素异形体),该位移的时间延迟由激光烧蚀过程中等离子体和原子的结合时间定义 [4, 5]。LAMIS 已成为 LIBS 的一种有前途的补充技术,因为它可以表征目标的同位素特征,从而提供同位素区分。拉曼光谱 (RS) 发生在分子被激发源激发并通过分子键或晶格的振动、旋转或拉伸产生非弹性散射时。每个谱带对应于分子键激发波长的不同拉曼波数位移,可用于识别或“指纹识别”多种材料。
本课程将重点介绍控制工程材料微观结构的基本和高级概念,并将这些概念与工程材料的最终物理特性联系起来。本课程分为三个模块:1) 金属,2) 陶瓷和玻璃,3) 聚合物和复合材料。每个模块首先回顾描述原子键合和微观结构的概念,并将微观结构与特定类别材料的物理特性联系起来。然后,学生将学习影响材料性能的制造技术,包括材料成型、后处理热处理和表面处理。每个模块都以选定的案例研究和/或详细的材料相关问题的分析结束
5实施9 5.1量子熵的生成和分布。。。。。。。。。。。。。。。。。。。。。9 5.1.1 OpenSSL框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 5.1.2熵源设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 5.2产后证书的生成。。。。。。。。。。。。。。。。。。。。。。。。。。12 5.3使用量子安全加密图15 5.4使用后量子键的交易签名。。。。。。。。。。。。。。。。。17 5.5 Quantum签名的链链验证。。。。。。。。。。。。。。。。。。。。19 5.5.1固体验证代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 5.5.2基于EVM虚拟机的签名验证支持。。。。。。。。。。。。20 5.5.3 EVM基于预编译的签名验证支持。。。。。。。。。。。。。。。。。。。22 5.5.4在不同溶液之间进行比较,以验证后量子后的定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23
我们考虑对双向量子键分布ping-Pong和LM05协议的中间攻击,其中窃听器在消息模式下复制所有消息,而在模式下则无法检测到。在攻击下,消息模式没有干扰,发件人和接收器之间的相互信息总是恒定的,并且相等,而窃听者复制的消息始终是真实的。只能在控制模式下检测到攻击,但是不能定义应中止协议的检测水平。我们检查了协议的步骤,以评估其安全性,并发现该协议应重新设计。我们还将其与单向非对称BB84的协议的安全性进行了比较,其中一个基础用作消息模式,另一种是控制模式,但确实具有应在该检测级别中流产的检测级别。
光化学环加成和环化反应为在各种(张力)环系统中构建碳-碳和碳-杂原子键提供了强大的合成工具,因此在合成复杂的生物活性化合物和新材料方面发挥了重要作用。然而,使用紫外线照射来促进这些过程的传统方法通常会受到竞争性和不可控的副反应的影响,从而限制了它们广泛的合成适用性。考虑到这一点,这些反应是使用能量转移 (EnT) 催化和流动化学开发温和可见光介导策略的理想目标。同时,仍然需要进行详细的筛选以处理复杂的 EnT 光催化剂设计、反应优化和光环加成过程的放大。
7量子密钥分布5 7.1密码学元素。。。。。。。。。。。。。。。。。。。。。。。。5 7.1.1密码学的简短历史。。。。。。。。。。。。。。。。5 7.1.2一次垫。。。。。。。。。。。。。。。。。。。。。。。。。6 7.1.3公共密钥分销方案。。。。。。。。。。。。。。。。7 7.1.4量子计算机可能会破坏公共密钥方案。8 7.1.5可以提供哪些量子密钥分布。。。。。。。。。。8 7.2量子键分布。。。。。。。。。。。。。。。。。。。。。。。。9 7.2.1 BB84量子密钥分布方案为示例。。。。9 7.2.2安全证明。。。。。。。。。。。。。。。。。。。。。。。。。11 7.2.3安全证明的一般策略。。。。。。。。。。。。。。12 7.3安全长距离量子密钥分布13 7.3.1基于纠缠的键分配方案。。。。。。。。。13 7.3.2纠缠交换和蒸馏。。。。。。。。。。。。14 7.3.3全量子中继器方案。。。。。。。。。。。。。。。。。15 div>
我们生活在大量个人信息和财务数据通过公共网络传输的时代。因此,安全通信的重要性不能被夸大。对称密码学,包括数据加密和消息身份验证,被广泛用于保护机密信息。今天,使用经典对称或现代非对称密钥管理方法对这些对称键进行管理。然而,即将到来的量子计算机威胁使现代的不对称加密术,并且在较小程度上,经典的对称加密摄影症处于危险之中。后现代解决方案,例如NIST量词后加密(PQC)不对称算法,以及其他抗量子键键分布(QKD)等其他抗量子技术,提供了一个加密过渡路径。