记录的版本:该预印本的一个版本于2024年6月3日在自然材料上发布。请参阅https://doi.org/10.1038/s41563-024-01910-3。
此外,传统测序技术依赖于通过PCR扩增的,从而消除了诸如甲基化的基础修饰,这意味着如果没有额外的时间消耗且经常效率低下的样品处理方法22。不需要纳米孔测序,不需要PCR,可以保留并直接测序碱基的修改。基础修饰检测不仅提供了更大的基因组表征深度,而且还可以用于支持元基因组重叠式嵌合,移动遗传元件与其宿主基因组的关联以及识别错误的元原核重叠群的鉴定23。元基因组数据的应变特异性甲基化模式可以进一步支持复杂微生物基因组的分辨率。
2 +,使用相对论量子场理论中的功能方法,即量子铬动力学(QCD)。到此为止,我们通过夸克 - diquark方法将三夸克faddeev方程减少到两体方程,在该方法中,重子被视为夸克和有效的diquarks的绑定状态。这种方法已成功用于轻巧和奇怪的重子。夸克 - diquark bethe salpeter振幅(BSA)的伯特salpeter方程(BSE)量达到相互作用内核的夸克乒乓交换。使用彩虹束截断中的Alkofer-Watson-Weigel相互作用确定夸克和diquark成分。BSE是通过将其转换为特征值问题并解决Quarkdiquark BSA的狄拉克敷料功能来实现的,我们使用Chebyshev扩展进行了评估。特征值问题的矩阵与这些考虑因素以及BSE的颜色和平流结构一起构建。这种结构由包含BSE的颜色迹线和avor因子的矩阵表示,以进行不同的diquark跃迁。我们在质量网格上计算地面和激发态的特征值,在质量网格中,物理状态对应于其相应特征值等于一个的条件。结果表明,基态质量与实验的总体一致,在此我们将模型比例设置为基态质量相对于实验质量的平均比率。激发态显示出比接地状态更高的高估。三重迷人的巴里昂也同意晶格QCD结果。使用QCD的潜在模型与晶格QCD和理论计算一致。仍然需要计算双重魅力的重子。
图3:CO 2和O 2跨动态O功能化孔的易位。CO 2和O 2的易位速率通过多孔石墨烯的温度函数(a)孔隙10,(b)孔-13和(c)孔-16。平均力(PMF)曲线的潜力(pore-10,(e)孔-13,(f)孔-16和O 2分子(g)孔-16)的co 2分子易位。多孔石墨烯位于z = 0,区域z> 0和z <0分别描绘了饲料和渗透的侧面。自由能屏障(∆A t),用于(H)CO 2至Pore-10,孔-13和孔-16和(J)CO 2和O 2至孔-16的易位。CO 2的易位速率是通过多孔石墨烯托管动态和刚性(J)孔隙10,(k)孔-13和(L)孔-16的易位。
(1)Clarke,J。; Wu,H。C。; Jayasinghe,L。;帕特尔(Patel)里德(S。); Bayley,H。单分子纳米孔DNA测序的连续碱基识别。自然纳米技术2009,4(4),265-270。doi:10.1038/nnano.2009.12。(2)Kasianowicz,J.J。; Brandin,E。; Branton,d。; Deamer,D。W.使用膜通道对单个多核苷酸分子的表征。美国国家科学院的会议录1996年,第93(24)期,13770-13773。doi:10.1073/pnas.93.24.13770。(3)Wang,K。F。;张,S.Y。;周,X。; Yang,X。;李,X. Y。; Wang,Y。Q。; Fan,P。P。; Xiao,Y。Q。;太阳,W。;张,P。K。;等。明确歧视所有20种蛋白质氨基酸及其修饰。自然方法2023。doi:10.1038/s41592-023-02021-8。(4)Ying,Y。L。; Hu,Z。L。;张,S。L。; Qing,Y。J。; fragasso,a。; Maglia,G。;梅勒(Meller) H. Bayley; Dekker,C。; Long,Y。T. Nanobore基于DNA测序的技术。自然纳米技术2022,17(11),1136-1146。doi:10.1038/s41565-022-01193-2。
分子载体代表了纳米孔传感领域中日益普遍的策略,用于使用二级分子选择溶液中靶分析物的存在,从而允许对其他难以检测的小分子(例如小,弱,带电的蛋白质)进行敏感测定。但是,现有的载体设计通常会引入纳米孔实验的缺点,包括更高水平的成本/复杂性和载波孔相互作用,从而导致信号和堵塞率升高。在这项工作中,我们基于粘性的DNA分子提出了一种简单的载体生产方法,该方法强调了易于合成和与纳米孔感应和分析的兼容性。尤其是我们的方法结合了能够灵活地控制生产的DNA载体长度的能力,从而通过可分离的纳米孔信号增强了该载体系统的多路复用电位,它们可以生成不同的目标。还提出了概念验证纳米孔实验,涉及我们的方法产生的载体,该载体具有多个长度,并附着于DNA纳米结构靶标,以验证系统的功能。随着纳米孔的应用的广度不断扩大,此处介绍的工具的可用性将非常重要。
抽象的介孔二氧化硅是一种出色的低密度透明材料,其特征在于定义明确的纳米孔径。它有各种形态,包括整体,纳米颗粒和电影。该材料在众多技术应用中起着关键作用,无论是独立的还是混合复合材料的组成部分,是多种无机和有机材料范围的宿主。在合成路线中,我们考虑了Sol -Gel方法,因为它在产生纳米颗粒和散装中孔二氧化硅方面取得了巨大成功。本评论的重点是探索介孔二氧化硅和介孔二氧化硅的复合材料的光学性质,并深入研究如何在各个领域中利用中孔二氧化硅内的巨大空间:热和电气绝缘,光子学,环境设备,或用于药物和生物模拟的纳米型。这项全面的检查强调了介孔二氧化硅的多方面潜力,将其定位为在各个科学领域开发创新解决方案的关键参与者。
所有这些在细胞中都起着非常重要的作用。核膜是围绕细胞核的双层结构,在保护细胞核免受细胞质和保护细胞核中的DNA免受外部影响方面发挥作用。核膜是控制重要过程的一个场所,例如细胞中的DNA复制,转录和修复。核膜对于维持核的形状也很重要,并且在稳定核的结构中也起作用。 核孔是嵌入核膜中的复合物,并用作在细胞核和细胞质之间运输材料的途径。细胞核中所需的蛋白质和RNA通过核孔传输,相反,在细胞核中合成的RNA和核糖体亚基中的RNA转运到细胞质。该传输非常严格控制,对于单元的正常运行至关重要。 如果这些结构无法正常运行,细胞将无法执行正常的基因表达或蛋白质合成,从而对细胞功能造成严重损害。因此,核膜和核孔是细胞寿命支持的极其重要的结构。 到目前为止,已经有几份有关ALS中核膜和核孔的报道,但是讨论的解释和意义一直在继续。在该研究组中,我们建立了IPS细胞(Ichiyanagi N等。运动神经元与干细胞报告的分化2016(Setsu S等人Biorxiv 2023),此外,使用ALS患者的验尸组织(脊髓)来阐明核鞘和核孔的病理。 3。进行了研究内容和结果(1)免疫染色,以评估运动神经元(18个月大)野生型小鼠和FUS-FUS-ALS模型小鼠的运动神经元(聊天量)(聊天定型)中核膜(层层B1,lamin a/c)的形态。 FUS-ALS模型小鼠中的运动神经元显示出与核膜相对应的部分的亮度和圆度降低(图1)。此外,核孔的形态学评估(NUP62)显示核孔中存在缺陷。这些结果证实,在FUS-ALS模型小鼠中,核膜和核孔受损。
使用不受长度限制的纳米孔读取(从短到超长),现在可以通过简单、简化的工作流程生成高质量的植物基因组组装。长纳米孔读取可以跨越大量重复或高度一致的序列和结构变体,而天然 DNA 测序可以捕获 PCR 无法访问的序列。在同一次测序运行中,还可以检测到表观遗传修饰以及规范碱基序列,从而从单个数据集提供多组学见解。多功能高输出 PromethION 设备使实验室能够扩展测序能力以适应不同规模、样本量和预算的项目,为不同的测序需求提供量身定制的解决方案。
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是