对能够利用可再生资源并实施数字流程的化学家的需求越来越大,同时意识到监管协议。培训这些领域的专家的必要性源于环境资源的稀缺性,并且需要优化化学过程,以最大程度地减少对环境的负面影响。为了实现这一目标,基于计算机的方法和AI的应用变得越来越重要。在您的学习期间,我们将为您提供深入的化学知识以及现代数字工具和化学法规方面的专业知识。您将受益于我们广泛的学术专业知识以及我们与奥地利和国外化学工业的良好联系。
注:首先通过 Kolmogorov-Smirnov 检验对各个组进行正态分布检验。对于正态分布数据,平均值、标准差 ( SD ) 和 p 值基于双样本 t 检验。如果在一个或两个组中违反了正态性假设,则列出中位数和四分位距 (IQR),并执行 Mann-Whitney U 检验(用 U 表示)。对于名义数据,对性别执行 Fisher 精确检验(用 F 表示),对惯用手执行似然比(用 L 表示)。
该手册由Cesba使用最初由TR Leger School Step Program设计和创建的材料更新。首选的分发引文是:Cesba(2021)成人教育课程,https://cesba.com文字处理手册的重要技能。
用于人工智能和神经形态计算的硅光子学 Bhavin J. Shastri 1,2、Thomas Ferreira de Lima 2、Chaoran Huang 2、Bicky A. Marquez 1、Sudip Shekhar 3、Lukas Chrostowski 3 和 Paul R. Prucnal 2 1 加拿大安大略省金斯顿皇后大学物理、工程物理和天文学系,邮编 K7L 3N6 2 普林斯顿大学电气工程系,邮编 新泽西州普林斯顿 08544,美国 3 加拿大不列颠哥伦比亚大学电气与计算机工程系,邮编 BC 温哥华,邮编 V6T 1Z4 shastri@ieee.org 摘要:由神经网络驱动的人工智能和神经形态计算已经实现了许多应用。电子平台上神经网络的软件实现在速度和能效方面受到限制。神经形态光子学旨在构建处理器,其中光学硬件模拟大脑中的神经网络。 © 2021 作者 神经形态计算领域旨在弥合冯·诺依曼计算机与人脑之间的能源效率差距。神经形态计算的兴起可以归因于当前计算能力与当前计算需求之间的差距不断扩大 [1]、[2]。因此,这催生了对新型大脑启发算法和应用程序的研究,这些算法和应用程序特别适合神经形态处理器。这些算法试图实时解决人工智能 (AI) 任务,同时消耗更少的能量。我们假设 [3],我们可以利用光子学的高并行性和速度,将相同的神经形态算法带到需要多通道多千兆赫模拟信号的应用,而数字处理很难实时处理这些信号。通过将光子设备的高带宽和并行性与类似大脑中的方法所实现的适应性和复杂性相结合,光子神经网络有可能比最先进的电子处理器快至少一万倍,同时每次计算消耗的能量更少 [4]。一个例子是非线性反馈控制;这是一项非常具有挑战性的任务,涉及实时计算约束二次优化问题的解。神经形态光子学可以实现新的应用,因为没有通用硬件能够处理微秒级的环境变化 [5]。