现代移动对象跟踪和识别技术已得到很大改进,帮助机器人技术,媒体生产,生物学研究,视频监控和身份验证系统等广泛的行业。尽管低分辨率视频录像(例如动态背景,照明,遮挡和阴影)存在持续的问题,但这些电影提供了直接的好处,例如减少处理,传输和存储要求。两相对象检测器(例如RCNN)过去很普遍并且成功。,新的发展将单相检测器及其相关算法带到了大多数两相检测器的最前沿。yolo爆炸(Yolo)已被广泛用于对象识别和检测,始终优于其两相检测器对应物[1,2,3]。该领域的这种转变主要是由机器学习(人工智能(AI)(ML)的一个分支)驱动的。使系统能够从以前的性能中发展和学习而无需明确编程。它对于对象识别的主题至关重要[4]。可以构建可靠的对象检测系统,因为机器学习算法能够识别大量标签
3。MSEDCL在其请愿书中所说的如下:3.1。委员会在其受损的命令中已批准了竞标文件的2,000兆瓦(在绿色鞋子期间最高3,000兆瓦)的储能存储容量,可以通过ISTS/INSTS连接的泵送水电站通过竞争性竞标来储存。3.2。该委员会在第(13.11)段的受损命令中指出,根据2418兆瓦的总存储要求,MSEDCL提议采购2000兆瓦(在绿色鞋子方面最高3000兆瓦)。肯定会额外的采购将溢出CEA设定的目标。但考虑妊娠期,地质问题和环境清除,很难预测项目时间表。因此,委员会允许MSEDCL继续提议的泵送存储厂(PSP)2000兆瓦的长期功率采购(在Green Shoe选项下最高3000兆瓦)。3.3。已计划从PSP中采购电力,以满足储能要求,并符合MERC(可再生购买义务,其合规性和可再生能源证书框架的合规性和实施)(第一修正案)条例,2024年。
近年来,太阳能光伏 (PV) 装置的使用率不断提高,从住宅屋顶的几千瓦到大型太阳能发电场的几兆瓦。太阳能光伏系统面临的一个关键挑战是它对太阳能的依赖,而太阳能具有间歇性且高度不可预测性。在这方面,电池储能系统 (BESS) 被视为可以平滑太阳能光伏系统输出功率波动的有效解决方案。因此,这项工作利用具有快速响应时间和高功率和能量密度的 BESS 来降低安装在校园屋顶的实际并网太阳能系统的太阳能输出波动。确定并分析了光伏功率波动的特性以及在允许范围内平滑波动的 BESS 存储要求。更重要的是,这项工作使用了间隔一分钟的实际太阳辐照度数据。研究结果表明,需要安装占太阳能安装容量 66% 的 BESS 和占安装系统平均每日太阳能发电量的 21% 的 BESS,才能平滑超过 10%/分钟的斜率限制的太阳能波动。
摘要(150个单词)现代镜头设计能够解决> 10吉像素,而相机框架速率和高光谱成像的进步使Terapixel/S数据获取成为了真正的可能性。阻止这种高数据率系统的主要瓶颈是功耗和数据存储。在这项工作中,我们表明模拟光子编码器可以应对这一挑战,从而可以使用比数字电子设备低的功率来实现高速图像压缩。我们的方法依赖于硅 - 光子学前端来压缩原始图像数据,预言了能量密集型图像调理并减少数据存储要求。压缩方案使用被动无序的光子结构来对原始图像数据进行内核型随机投影,其功耗最少和低潜伏期。后端神经网络可以以超过90%的结构相似性重建原始图像。此方案有可能使用小于100 FJ/Pixel处理Terapixel/S数据流,从而为超高分辨率数据和图像采集系统提供了途径。
抗体以及CD4 +和CD8 + T细胞,并证明了预防严重疾病和降低死亡率的能力(1-3)。许多病原体,包括SARS-COV-2和流感病毒,都会在上呼吸道中感染。然而,传统的肠胃外疫苗会引起粘膜免疫不良,这在上呼吸道中的分泌IgA证明了(4,5)。因此,它们不能完全防止病毒感染或传播(6,7)。因此,需要在全身循环中诱导IgA以及在系统循环中诱导IgA的发育。使用病原体衍生的蛋白质或肽作为疫苗抗原的亚基疫苗比OTHER疫苗类型具有多个优势,例如实时侵入的疫苗和无激量的疫苗(8)。这些优势包括出色的安全性,易于升级生产,低生产成本以及易于存储要求。然而,由于粘膜屏障阻止抗原递送到抗原呈递细胞(APC),例如DC,巨噬细胞和B细胞,因此鼻内亚基疫苗效率低下,导致抗原特异性免疫反应。,尽管已经尝试开发鼻内子
中心城市项目 1.0 项目描述 1.1 位置和一般描述 中心城市项目在 FEIS 第 3 章中被描述为社区替代方案,将位于德克萨斯州塔兰特县沃斯堡的三一河清澈河和西岔口。这个综合项目将包括一个旁路渠道、一个堤坝系统和相关改进,以将洪水流转移到沃斯堡市中心附近现有三一河的一段周围。此替代方案的具体组成部分在 FEIS 第 3 章中讨论。该项目还包括水力缓解措施,以满足山谷存储要求。水力缓解措施将在三个位置完成,包括河湾、大学大道和 Samuels 大道和 I-35 附近的下游站点。Samuels 大道下游的河道内大坝将拦水至大约 525 英尺的正常水面高度。此外,Riverbend 水力缓解站点将进行生态恢复,以完全缓解该项目造成的河岸和高地森林以及新出现的湿地损失。Rockwood Park 区域内的两个牛轭湖将重新连接到 West Fork,为系统提供更好的水生栖息地,并将在 Ham Branch 和 Lebow Creek 缓解由于 Marine Creek 部分河段被淹没而造成的水生栖息地损失。
3. 要求 ................................................................................................................................................................ 6 3.1 备用电池存储要求 .............................................................................................................................. 6 3.1.1 概述 .............................................................................................................................................. 6 3.1.2 新镍镉电池的存储 ............................................................................................................. 6 3.1.3 新富液式铅酸电池的存储 ...................................................................................................... 8 3.1.4 新阀控式 (VRLA) 铅酸电池的存储 ............................................................................. 9 3.2 调试检查表 ............................................................................................................................................. 9 3.2.1 概述 ............................................................................................................................................. 9 3.2.2 电池室 ............................................................................................................................................. 9 3.2.3 电池、电池柜和电池架 ............................................................................................................. 10 3.3 调试测量设备 ............................................................................................................................. 10 3.3.1 概述 ............................................................................................................................................. 10 3.3.2 电压测量 ................................................................................................................................ 10 3.3.3 电流测量 ................................................................................................................................ 10 3.3.4 温度测量 ................................................................................................................................ 10 3.3.5 比重测量和电解液 ............................................................................................................. 10 3.3.6 时间测量 ............................................................................................................................. 10 3.3.7 电池水电导率 ...................................................................................................................... 10 3.3.8 放电测试设备 ...................................................................................................................... 10 3.4 电池安装 ...................................................................................................................................... 10 3.4.1 电池柜 ............................................................................................................................. 10 3.4.2 电池架 ............................................................................................................................................................................................. 11 3.4.3 电池 ................................................................................................................................ 11 3.5 电池调试 ................................................................................................................................ 12 3.5.1 安全要求 ............................................................................................................................ 12 3.5.2 电池充电 ............................................................................................................................ 12 3.5.3 干式、富液式铅酸电池的初始充电 ............................................................................. 12 3.5.4 湿式、富液式铅酸电池的初始充电 ............................................................................. 16 3.5.5 阀控铅酸电池的初始/调试充电 ............................................................................. 16 3.5.6 镍镉电池的初始/调试充电 ............................................................................. 16
早已采用抽象食品加工方法来维护食品质量并确保其在所需水平上保存,从而最大程度地提高其营养优势。食品保存领域涵盖了涉及耕种,收获,加工,包装和食物分配的整个活动。食品保存的主要目标是提供增值食品,增强饮食多样性,并解决与次优农业计划有关的问题。多种化学和生物学相互作用会导致食物变质。诸如干燥,冷冻,冷冻和巴氏杀菌的古老实践已得到利用和精致,以抵消食品的化学和微生物降解。近年来,这些保存方法已经取得了重大进步,使它们变得越来越复杂。当代技术包括辐射,高压处理和纳米技术来保存食品。本章深入研究机制,应用条件,存储要求,并概述了各种食品保存技术。此外,它探索了各种食物类别和一系列因素(物理,化学和微生物),从而有助于食物变质。从事食品加工,保存,储存和食品安全的专家和研究人员将发现本文有助于设计有效而全面的食物保存方法。关键词:食品保存,食物存储,食品安全,食物加工,宠物
摘要:液体金属电池(LMB)技术是一个由不同的经济和政治氛围所生的新研究领域,能够解决缺乏电力储能替代方案的社会的缺陷。美国政府已开始在其顶级工业和国家实验室资助学术研究工作。这是为了开发液态金属电池电池来存储解决方案。在冷战争取科学优势的战斗中,这项研究受到鼓励。密集研究随后朝着高能充电电池倾斜,该电池对汽车和其他应用更好。对电化学可充电全液体储能电池的发展进行了深入的研究。最近对各种应用的绿色能源转移和存储要求,范围从小规模到大型电源存储,增加了储能的进步和探索。通过锂离子电池,钠离子电池和液体金属电池的开发,已经满足了高能密度,低成本和广泛的能源存储的标准。这项研究的目的是确定液态金属电池技术可以提供研究概念,从而为LMB开发提供了可能利用的电极金属的预测。因此,在这项研究结束时,发现LI // CD-SB组合的参数估计对于LI //////////dd-bi,li-Bi和li-cd成分而言最可行。LMB参数估计的独特组成部分将为LMB开发带来更好的结果。
在X射线计算机断层扫描(CT)成像中,重建内核的选择至关重要,因为它显着影响了临床图像的质量。不同的内核会以各种方式影响空间分辨率,图像噪声和对比度。涉及肺成像的临床应用通常需要使用软核和锋利核重建的图像。使用不同内核的图像重建需要原始的曲征数据,并为所有内核存储图像会增加处理时间和存储要求。视野的视野(DFOV)增加了内核合成的复杂性,因为在不同的DFOV上获得的数据表现出不同级别的清晰度和细节。这项工作为基于图像的内核综合使用基于模型的深度学习引入了有效的,DFOV - 敏锐的解决方案。提出的方法将CT内核和DFOV特性集成到正向模型中。对临床数据的实验结果,以及使用电线幻像数据对估计调制函数进行定量分析,清楚地证明了该方法实时的实用性。此外,缺乏正向模型信息的直接学习网络的比较研究表明,所提出的方法对DFOV变化更为强大。