1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)
图1真核MMR的概述MUTS同源物识别不匹配的碱基对。 MUTSα识别错误和小安培碱基,而MUTSβ识别大型安培碱基。 MUTLα与MUTSα-不匹配复合物相互作用。 PCNA通过夹具装载机放置在双链DNA链的不连续部分中的DNA上。夹具形的PCNA在滑动夹具孔时移动。由于PCNA的结构具有极性(侧面和前部),因此PCNA在保持其极性的同时移动到DNA上,并与MUTLα相互作用。 PCNA的极性不同会激活MUTLα以仅裂解新生的链侧,从而导致不匹配两侧的划痕。核酸外切酶EXO 1去除含错误的区域,所得的间隙区域充满DNA聚合酶δ,一种复制的聚合酶。除大肠杆菌及其相关物种外,人们认为许多真正的细菌将以几乎相同的机制反应。但是,预计区分新链和旧链的机制将会有所不同。24)。一些古细菌具有真核MMR(可能是从真实细菌水平传播的)40),这是少数族裔,大多数具有完全不同的机制,称为内质系统41)。内体是一种与限制酶具有结构和功能相似性的酶,并且在不匹配的碱基对附近裂解了双链DNA的两个链。这种双链裂解预计将通过同源重组系统修复。使用同源重组系统的维修反应非常准确,这是有道理的,因为修复合成是使用另一个DNA分子(染色体)作为模板的同源区域进行的,因此无需区分旧链和新链。
简介 RAID 一直被认为是确保可靠存储的基础技术。然而,在云计算和大数据时代,RAID 已无法满足新应用程序的海量数据增长。因此,人们开始寻找能够提供超大规模容量和能力的新存储技术。Ceph 是解决这些问题的代表性存储,也是最流行的软件定义存储 (SDS) 解决方案之一。SDS 解决方案利用商用硬件来降低存储的总拥有成本、采购成本和运营成本。Ceph 的分布式架构能够为大容量应用程序存储大量数据,并通过多份数据副本消除任何单点故障以实现灾难恢复。Ceph 现在已成为 OpenStack 的原生存储,并已部署在全球多个国家/地区。Ceph 有三个关键特性使其不同于其他 SDS 解决方案:
这些标签有助于根据内容和类型整理收到的电子邮件。社交:来自社交媒体平台和其他社交网站的电子邮件。更新:与确认、收据、账单或其他交易信息相关的电子邮件。论坛:来自在线论坛和讨论组的电子邮件。促销:与营销、新闻通讯和促销内容相关的电子邮件。
背景。细胞色素BD复合物是在多种细菌病原体中感染期间很重要的原核生物中发现的呼吸道氧化酶。方法。在计算机对接中被用来筛查经批准的药物,因为它们能够与大肠杆菌细胞色素bd -I的奎诺醇位点结合。呼吸抑制作用。使用生长/生存力分析来测量抑菌和杀菌作用。结果。类固醇药物乙基雌二醇和奎尼斯罗抑制了大肠杆菌BD -I活性,中位抑制浓度(IC 50)值为47±28.9 µg/mL(158±97.2 µm)和0.2±0.04 µg/ml(0.2±0.04 µg/ml(0.5±0.1±0.1 µm)。Quinestrol抑制了大肠杆菌“ BD -I仅”菌株的生长,其IC 50的0.06±0.02 µg/ml(0.2±0.07 µm)。金黄色葡萄球菌“仅BD”菌株的生长被Quinestro抑制,IC 50的2.2±0.43 µg/ml(6.0±1.2 µm)抑制。喹尔estol对金黄色葡萄球菌表现出有效的杀菌作用,而不是大肠杆菌。结论。Quinestrol抑制大肠杆菌和金黄色葡萄球菌中的细胞色素BD,并抑制两种物种的生长,但仅是对金黄色葡萄球菌的杀菌性。关键字。细胞色素bd;抗菌;药物重新利用;奎内尔特; MRSA。
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/pbi.13573
该文档是通过Riscauthority开发的,并由消防保护协会(FPA)出版,并由英国自动消防喷头协会(BAFSA)认可。Riscauthority会员资格包括一组英国保险公司,这些保险公司积极支持许多专家工作组,开发并颁布了最佳实践,以保护人们,财产,商业和环境因火灾和其他风险而造成的损失。本文档的技术专长是由FPA的技术局,外部顾问和保险行业的专家提供的,他们共同组成了各种Riscauthority工作组。尽管使用保险公司的投入生产,但它并不(也不是打算)代表泛保险公司的观点。个别保险公司将有自己的要求,这可能与本文档内容不同或不反映。
镍镉系统使用与镍铁系统相同的正极和电解质,并结合金属镉负极。电池反应如表 10.1 所示,其标称开路电压为 1.3 V。从历史上看,电池的发展与镍铁的发展同步,性能相似。镍镉技术因具有高比功率(超过 220 W/kg)、长循环寿命(高达 2000 次循环)、高电气和机械滥用耐受性、宽放电电流范围内电压降小、快速充电能力(18 分钟内约 40% 至 80%)、宽工作温度范围(-40 至 85°C)、低自放电率(<0.5%/天)、由于腐蚀可忽略不计而具有出色的长期储存性能以及多种尺寸设计等优点而取得了巨大的技术进步。然而,镍镉电池也存在一些缺点,包括初始成本高、电池电压相对较低以及镉的致癌性和环境危害。镍镉电池通常可分为两大类,即通风型和密封型。通风型有许多替代品。通风烧结板是较新的发展,具有较高的比能,但价格较贵。它的特点是放电电压曲线平坦,大电流速率和低温性能优越。密封镍镉电池采用特定的电池设计特点,可防止过度充电期间因气体产生而导致电池内压力积聚。因此,该电池无需维护。EV 和 HEV 配置的镍镉电池的主要制造商是 SAFT 和 VARTA。最近采用镍镉电池供电的电动汽车包括克莱斯勒 TE Van、雪铁龙 AX、马自达 Roadster、三菱 EV、标致 106 和雷诺 Clio。
碳捕获和储存既可以减少温室气体的排放,又可以提供负排放,以促进向零净社会的过渡。在跨部门能源系统模型中研究了碳捕获和储存的贡献。但是,这种模型通常专注于成本和温室气体的排放,而仅研究单个技术的更广泛的环境影响。在这里,我们通过将能源系统建模与生命周期评估相结合,分析了向零排放的经济和环境影响。我们专注于二氧化碳存储对经济或环境影响的含义。在我们对德国能源系统的过渡到2045年的调查中,零排放需要最少的碳捕获和储存量。然而,通过避免投资于材料密集型技术,例如在具有低发电潜力的领域的领域,将二氧化碳储存量增加到最低量的最低量显着降低了16个影响类别中13个影响类别中的成本和环境影响。在没有电力进口的情况下,二氧化碳存储在2045年的118吨至379吨之间,当二氧化碳存储量最小化时,成本增加了105%。为消除储存的最后23吨二氧化碳而产生的成本增加84%。应用碳捕获和存放的好处是可再生电力进口和需要补偿的残余排放量的变化。因此,结果表明,碳捕获和储存可以在过渡到温室气体排放以外的净零能源系统中提供经济和环境利益。
