本研究研究了建立幻想板球团队的三种方法:用户创建的过程,随机过程和K-均值聚类算法。目的是通过检查六场游戏的玩家性能数据来确定最佳的编队策略。随机过程通过在预定参数中随机挑选玩家来创建团队,但用户创建的过程使用基于直观策略的手动选择。使用机器学习技术,根据信用和绩效指标,K-Means聚类算法小组团队,以找到保留在信用限制范围内的表现最佳的团队。这将优化团队组成。我们的发现表明,就整体绩效而言,用户创建和随机生成的团队经常通过K-表示聚类技术执行。这项研究表明了机器学习技术如何通过提供数据驱动的方法来改善幻想板球团队的发展,该方法优于传统和随机方法。关键字:K-均值聚类,幻想板球,幻想点系统,团队优化和玩家
结合了影像学和症状学信息。1 由于确定适当电极轨迹的复杂性,必须从术前图像中准确分割出感兴趣的解剖结构。对于 DBS 术前规划,分割主要通过将患者图像配准到图谱空间中来确定,在该图谱空间中,感兴趣的解剖结构(通常是丘脑底核 (STN))以及其他显著区域已经预先分割。2、3 使用预先分割的图谱有几个优点。从临床角度来看,可以将大量分割区域从图谱移植到患者空间,从而简化工作流程的计算方面。从研究角度来看,使用图谱,可以将患者图像中特定于患者的信息移植回通用图谱坐标系,从而可以辨别出人群信息,这有助于指导治疗。4
黑色素瘤是皮肤癌最具侵略性的类型之一,其早期发现对于改善患者的存活率和治疗结果至关重要。常规的诊断方法通常遭受高计算成本和较低的精度,这主要是由于特征选择和分类策略不足。这项研究的目的是将最先进的深度学习技术与优化算法相结合,以开发出一种精确有效的预测系统以进行黑素瘤检测。在这项工作中,我们提出了一个新颖的框架,该框架集成了用于图像分类的卷积神经网络(CNN)和用于特征选择的二进制灰狼优化(GWO)算法。二进制GWO算法确定了皮肤病学图像中最相关的特征,从而消除了冗余并减轻了计算负担。然后对CNN进行精制特征子集的训练,以提高分类效率。公开可用的皮肤病变数据集的广泛实验表明,所提出的模型显着优于传统的机器学习模型。敏感性,特异性和整体分类精度的提高突出了将深度学习与优化技术相结合的有效性。我们的结果表明,深度学习和优化方法(例如二进制GWO算法)可以成功应用于黑色素瘤诊断。该策略不仅提高了检测效率和准确性,而且还支持早期诊断和治疗计划,从而提高患者的结果。通过利用二进制GWO算法来优化特征选择过程和用于图像分类的CNN,建议的方法可以降低计算成本,同时提高分类精度。与传统机器学习模型相比,该模型在公开可用的皮肤病变数据集进行了培训和评估时,表现出敏感性,特异性和整体准确性的显着提高。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
抽象目的:在牙科手术之前,使用手动射线照片来计划治疗时间并确定骨骼成熟度。本研究旨在使用不同的深度学习方法来确定手工射线照片的性别。方法:预先处理了1044个个体(534名男性和510名女性)的左手射线照相仪,以阐明图像并调整对比度。在性别分类问题中,Alexnet,VGG16和VGG19转移学习方法都被用作单独的分类器,并将这些方法从这些方法中获取并赋予了支持向量机(SVM)分类器。结果:结果表明,图像分析和深度学习技术在性别确定方面提供了91.1%的精度。结论:手工射线照相表现出性二态性,可用于性别预测。关键字:深度学习; İmage分析;手动X光片;性别确定
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 2 月 3 日发布。;https://doi.org/10.1101/2025.02.03.636311 doi:bioRxiv preprint
fi g u r e 1基于VAE方法的图表应用于EDNA数据(VAESEQ)。该模型由一个自动编码器(AE)和一个变异自动编码器(VAE)组成。AE将每个MOTU的遗传序列信息与每个样品中每个MOTU的存在/不存在相结合,以生成第一个潜在编码Z AE。然后将此信息传递给一个编码层的VAE。因此,在每次迭代中,VAE接收到一个样品中每个MOTU检测到的序列的输入,并且嵌入Z AE的自动编码器。vae处理两个输入,并将样品的维度降低到二维潜在空间z vae。在z vae中,我们找到了所有数据点的2D表示(图S3A,b)。在解码部分中,VAE重建了两个输入,以相应地优化网络。
在本文中,我们的目标是通过使用纯量子算法以及量子机器学习算法来提供不太复杂的解决方案,以合理的时间解决概率安全研究(PSS)领域的问题。我们解决 EPS 问题的两个方面,即静态和动态。对于静态问题,我们感兴趣的是找到系统中可能产生严重事故的所有基本事件组合,我们建议通过量子算法来获得这些基本事件组合,使用有向图,而不是搜索 SAT 问题的所有解。我们的贡献是一种量子算法,它使用线性数量的量子比特,通过经典过滤器,我们可以找到所有能够产生这些事故的基本事件的组合。在动态情况下,我们感兴趣的是找到系统中的所有偶然序列,我们的主要兴趣是处理这些序列。在经典情况下,为了找到所有这些序列,我们使用系统的状态图并寻找当前状态和所有临界状态之间的所有路径。由于这个问题是 NP 完全的,我们提出了一个量子解决方案来找到所有这样的路径。我们提出了两种量子算法,均基于量子行走的哲学。第一个算法在有向无环图中查找源顶点和几个目标顶点之间的所有路径。该算法使用N个量子比特和M个门来寻找所有路径。第二个是第一个的混合版本,即使量子比特数量减少,它也能够处理大图。另一个贡献是采用动态时间规整 (DTW) 算法的量子方法来计算这些序列之间的相似性,以及能够使用长度动态变化的子序列在序列之间找到最佳匹配的版本。我们还提出了一种量子隐马尔可夫模型 (QHMM) 的学习策略,以便从系统的任何初始状态生成意外场景并实时管理系统。我们最终提出了量子 k-means 的改进版本。经典版本的k-means每次迭代的复杂度为O(K×M×N)。在我们的案例中,使用单个量子电路计算观测值和聚类中心之间的所有距离,并使用 Grover 的量子搜索算法,我们可以将复杂度降低到 O(log(K×M×N))。还提出了利用绝热量子的量子平衡k均值算法的另一个版本。最后,我们提出了一种比经典版本更快的 Convex-NMF 算法的量子版本。我们将提出的方法应用于 EPS 领域的实际系统,以此作为本论文的结论。
根据印度名字对性别进行分类,这对国家的巨大文化,语言和地区多样性提出了独特的挑战。现有的方法经常难以解决由宗教,家族和语言影响塑造的命名惯例的复杂性,从而导致不一致和不准确的分类。为了应对这些挑战,这项研究开发了一种文化多样的数据集,分别是313万名男性和女性名称以及杠杆先进的机器学习(ML)和性别分类的深度学习(DL)技术。这些名称来自印度选举数据,使用自定义脚本生成的合成名称以及网站上的公开名称以确保多样性。评估了十二个ML模型,并具有前四个卷积神经网络(CNN),长期短期记忆(LSTM),门控复发单元(GRU)和XGBOOST,以详细分析。
Montréal, QC, Canada 2 Mila – Quebec AI Institute, Montréal, QC, Canada * Corresponding author: guillaume.dumas@ppsp.team Abstract: This study introduces a self-supervised learning (SSL) approach to hyperscanning electroencephalography (EEG) data, targeting the identification of autism spectrum condition (ASC) during social interactions.Hyperscanning可以同时记录相互作用的个体的神经活动,为研究ASC中的大脑对脑之间的同步提供了新的途径。利用一个大规模的单脑力EEG数据集进行SSL预处理,我们开发了一个多脑分类模型,并通过涉及ASC和神经型参与者的二元相互作用的超扫描数据进行了微调。与使用光谱EEG生物标志物相比,SSL模型表现出优异的性能(精度为78.13%)。这些结果强调了SSL在应对有限标记数据的挑战,增强基于EEG的ASC诊断工具以及推进社会神经科学研究的挑战方面的功效。关键字:自闭症,超级扫描,脑电图,自我监督学习,脑之间同步,精神病学