○ITHACA,实时高级计算应用程序,是整合已经建立了良好的CSE/CFD开源软件○RBNICS作为新手ROM用户(培训)的教育计划(FEM)。○ Argos A dvanced R educed order modellin G O nline computational web server for parametric S ystems ○ PINA a deep learning library to solve differential equations ○ EzyRB data-driven model order reduction for parametrized problems ○ PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration with University of Texas, CERN, and University of Washington)
cc0pi信号定义(中微子模式):一种负电荷的muON,零亲和在最终状态下检测到的任何数量的哈德子,其中在FGD1(scintillator)中重建了顶点(scIntillator)fimial formial量
实施,实验和结果38 5.1。软件实施38 5.1.1 TensorFlow 38 5.1.2 Pendulum驱动器38 5.1.3 Pendulum Environment 38 5.1.4 Raspberry Pi Software 39 5.1.5深钢筋学习39 5.2。硬件实现39 5.2.1带电机驱动器的Raspberry Pi 39 5.2.2带电机旋转编码器的Raspberry Pi 40 5.2.3 Raspberry pi搭配摆旋转旋转编码器40 5.3。实验实现和设置40 5.3.1环境40 5.3.2参数41 5.4。仿真结果42 5.4.1应用突然变化44
本文分析了在线增强学习算法的复杂性,即Q学习和价值意识的异步实时版本,应用于确定性域中达到目标状态的问题。先前的工作得出的结论是,在许多情况下,Tabula Rasa强化学习是针对此类问题的指定的,或者只有在增强学习算法时才可以处理。我们表明,相反,算法是可以处理的,而任务表示或初始化的模拟更改。我们在最坏情况的复杂性上提供了紧密的界限,并显示出复杂性是如何较小的,如果系统性学习算法对状态空间或域具有某些特殊属性的初始了解。我们还提出了一种新颖的双向Q学习算法,以从所有状态到目标状态找到最佳路径,并表明它不比其他算法更复杂。
该项目来自Google(https://adafru.it/icg),使用笔记本电脑的内置相机来识别各种谷物和棉花糖。然后根据您训练的模型对计算机进行分类。电路游乐场快车(http://adafru.it/3333)与计算机进行通信,以决定何时通过微伺服器对哪种棉花糖/谷物进行分类。
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
