3.1–3.7 分级方法 3.2–3.3 3.2 应使用分级方法确定对任何特定设施或活动进行安全评估的范围、程度、详细程度和工作量。3.3 在将分级方法应用于安全评估时,主要考虑的因素是设施或活动产生的潜在辐射风险的大小。这需要考虑正常运行中放射性物质的任何释放、预期运行事件和事故的潜在后果,以及发生可能产生严重后果的极低概率事件的可能性。审查结果 满足了要求。范围、程度、详细程度和工作量与核反应堆发生大量放射性释放的堆芯劣化事故的可能性相一致。按照美国核管理委员会的标准 DCD 格式,进行了安全分析,以确定设计和工程安全功能是否满足所需的安全功能。提供了有关如何实现美国核管理委员会、英国健康服务署和 WENRA 制定的安全目标和标准的详细信息。该设计利用了过去反应堆运行的经验,并满足了美国和欧洲公用事业的要求。事故分析的结果在 DCD 第 15 章中提供。分析遵循基于工厂条件分类的标准美国核管理委员会程序。分析涵盖正常运行、预期运行事件、设计基准事故、特殊事件和超设计基准事故。进行确定性和概率分析的目的是证明已达到足够的安全水平。考虑了发生极低概率事件但可能造成严重后果的可能性。特别是,设计特征符合 IAEA NS-R-1 要求,即“除了设计基础外,设计中还应考虑超出设计基础的特定事故(包括选定的严重事故)中工厂的性能”。特殊特征旨在通过冷却外表面来阻止反应堆压力容器内的熔融堆芯,从而避免对安全壳造成挑战。
混凝土结构的使用寿命不够长,而且失效现象十分常见。原因有两个:1)荷载的随机性,例如交通、自然灾害、环境和随机振动等荷载;2)材料特性和失效机制的不确定性。虽然前者已经取得了重大进展,但后者的进展直到最近才变得显著。混凝土结构的耐久性通常受到某些腐蚀的影响,这些腐蚀总是由宽度大于 0.1 毫米的裂缝发展引起,这些裂缝允许带有腐蚀性离子的水进入,从而控制使用寿命。历史上,大型桥梁发生失效事件的频率约为千分之一,这是不可接受的。一般认为,桥梁、核安全壳、飞机等的失效概率不得超过百万分之一,也就是被倒下的树木、闪电或野生动物击中而死亡的概率。因此,合理制定设计规范条款需要大量实验证据的推断。例如,在钢筋混凝土的剪切失效中,全球数据库包含约 800 个试验,但其中 95% 涉及 0.4 m 以下的截面深度,而实际发生的截面深度可达 15 m。对于控制桥梁和其他结构耐久性的混凝土徐变和收缩,现有数据库包含 50,000 多个数据点,但其中 96% 是通过 6 年试验获得的,99% 是通过 12 年试验获得的,而设计中通常规定 150 年的寿命。实验室测试和随机有限元代码无法提供低于 1/20 的故障概率信息,因此,如果没有间接验证的理论,就无法推断出 10 -6。本讲座认为,一种有效的扩展方法是确定规模、时间和风险范围两端的渐近定律。此类定律可以在范围的低端通过实验校准,比中间过渡简单得多。使用渐近匹配就足够了,这在流体力学中已经是一种长期常见的做法。渐近匹配可以采用多种方法,通过几个典型示例进行解释 - 1)准脆性和延性断裂缩放的尺寸效应定律,2)钢筋混凝土梁的缩放和剪切破坏,3)在水分扩散和长期水化存在下,混凝土的收缩、自生收缩、自干燥、膨胀和徐变的时间缩放,以及 4)基于交替串并联连接的概率模型将基本失效统计数据外推到失效概率 10 -6,该模型类似于对角拉的鱼网,并描述威布尔分布和高斯分布之间的过渡。
本报告总结了拟议的代码开发工作,以扩展 NRC 对非轻水反应堆技术的事故进展、源项和后果分析的建模和仿真能力。本报告描述了不同类型的非轻水反应堆以及 NRC 计算机代码的建模差距,包括用于事故进展和源项分析的 MELCOR、用于后果分析的 MACCS 和用于放射性核素清单的 SCALE。严重事故进展、源项和后果分析深深植根于 NRC 的监管政策和实践中。许可流程基于纵深防御的概念,其中发电厂的设计、运行、选址和应急计划构成了独立的核安全层。这种方法鼓励核电站设计师结合多道防线,以保持辐射危害与工人、公众和环境之间的物理屏障的有效性——无论是正常运行还是事故情况。与设计基准事故一起使用的各种监管源术语,建立和确认核设施的设计基准,包括安全重要项目,确保工厂设计符合美国联邦法规 (CFR) 中规定的安全和数值放射性标准(例如,10 CFR 100.11,“禁区、低人口区和人口中心距离的确定”;10 CFR 50.67,“事故源术语”;10 CFR 50.34(a)(1)(iv);10 CFR 第 50 部分“生产和使用设施的国内许可”附录 A“核电站通用设计标准”中通用设计标准 19“控制室”)以及后续员工指导。通用设计标准 (GDC) 适用于轻水反应堆 (LWR)。非轻水反应堆将具有主要设计标准 (PDC),其可能有类似的要求。 MELCOR 是桑迪亚国家实验室为 NRC 开发的最先进的计算机代码,用于执行核反应堆严重事故进展和源项分析。MELCOR 是一种灵活的集成计算机代码,旨在描述和跟踪严重事故的演变,以及相关放射性核素在封闭空间(如安全壳或建筑物)内的传输。它是一个知识库,包含价值数亿美元的实验和模型开发,特别关注轻水反应堆现象学以及非轻水反应堆技术的扩展功能。现象识别和排序表 (PIRT) 中已经开发和记录了特定的数据和计算需求,例如与 NGNP 相关的严重事故 (SA) PIRT 以及各种钠冷快堆和熔盐反应堆 PIRT 分析 [1] [2] [3] [4] [5] [6]。相关数据需求已从这些 PIRT 中收集并整合到本报告中。本报告提供了与各种非轻水反应堆设计相关的代码功能状态的高级理解。
在磁约束聚变 (MCF) 领域,氚燃料循环已得到详尽研究。[1,2,3] 已经开发出处理、监测、从化学结合物种中回收、浓缩和储存氚的技术,其产量接近反应堆相关产量。[4] 关键组件已在大型托卡马克或氚处理设施中进行了测试。[5] 该技术的很大一部分可转移到适用于惯性聚变能 (IFE) 的系统。然而,操作条件与磁性情况有很大不同,因此对 IFE 燃料循环组件施加了 MCF 情况下没有的条件,因此需要针对 IFE 特定主题进行研究。燃料回路由喷射器系统和用于回收反应堆流出物的基础设施组成。MCF 中的颗粒注入是一种将 DT 冰输送到托卡马克等离子体深处的有吸引力的方法。部署在 IFE 反应堆中的目标需要特定的设计来优化燃烧分数,该分数可能高达 1/3。这可能需要不同元素的复合层。湿泡沫等靶概念将由嵌入低密度 CH 泡沫中的液态 DT 组成,也很有前景。MCF 反应堆将在真空中运行,主要成分是氢同位素。一些 IFE 反应堆设计将在中等真空(几托)下运行,主要成分是氖或氙,以帮助缓和冲击波和对第一壁的粒子冲击。MCF 反应堆必须应对等离子体与偏滤器相互作用时产生的灰尘。IFE 反应堆需要将残留的靶碎片与流出物中的挥发性氢物种分离并去除。图 1 提供了 IFE 反应堆的通用燃料循环。作为代表性示例,该设计隐含了在薄壁塑料外壳内分层使用 DT 冰。泡沫填充的液态 DT 靶和更复杂的靶设计(例如采用空腔的靶设计)将需要更广泛的碎片收集和处理子系统(具体取决于细节)。燃料循环包括两个独立的回路:一个回路为反应堆提供燃料,另一个回路用于增殖氚。反应堆流出物被分离成两股:挥发性成分在气体离开反应堆时被低温抽吸,而颗粒碎片则通过重力送入收集器并氧化以将吸收的氢与碳物质分离。低温分离器将氦灰排放到环境中,将氖/氙转移以供再利用,并通过渗透器将氢同位素排放到同位素分离器。同位素分离器将氢排放到环境中,并将氘和氚引导到胶囊工厂和靶填充系统。增殖毯回路有两个主要功能:从反应堆中提取热量和增殖氚。反应堆周围是熔盐池,用于捕获和缓和聚变中子,作为氚增殖的前体。熔盐从反应堆泵出,通过热交换器、杂质去除子系统(用于净化熔盐)、氚提取模块,然后返回到反应堆周围的安全壳中。在 380 MWe IFE 反应堆中,主要物质的摩尔流速为:H、D、T、C、O、He 和 Xe,该反应堆使用封装在薄塑料壳中的 DT 冰靶。20 毫克氚靶以 0.5 Hz 的频率注入。燃烧分数假设为 25%。聚变功率转换为电能的比率假设为 30%。假设工厂占空比为 90%。