核电站的布局是基于单个单元(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机为满足 III 类应急电源要求而提供,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
更大的可再生能源渗透率需要增加能源存储容量。需要长时储能 (LDES) 来平衡间歇性可再生能源供应与每日、每周甚至季节性的供应变化。在这些时间尺度上,传统的电化学电池变得不经济。固体颗粒热能存储 (TES) 是解决此问题的可行解决方案。固体颗粒可以达到比传统聚光太阳能 (CSP) TES 系统中使用的熔盐更高的温度 (> 1,100 ◦ C)。更高的温度可产生更高的功率循环热电转换效率。然而,在这些较高的温度下,更大的热损失和绝缘材料成本可能会抵消效率效益。在这项工作中,对能够储存 5.51 GWht 的全尺寸 3D 安全壳筒仓的绝缘设计进行了热分析,用于 LDES 用于电网电力。使用瞬态 FEA 方法模拟了提出的操作条件。经过 5 天(120 小时)的储存,在设计储存温度 1,200 ◦ C 下实现了 < 3% 的热能损失。考虑并满足了材料的热极限。还研究了存储系统性能对操作、气候和时间变化的敏感性。这些变化对系统的热效率影响很小,但对绝缘设计的其他方面确实具有重大影响。
6.1.2.5 燃料棒轴向生长 ...................................................................................... 6-9 6.1.2.6 包壳压扁 .............................................................................................. 6-9 6.1.2.7 燃料芯块过热(功率熔化) ...................................................................... 6-10 6.1.2.8 芯块-包壳相互作用 ............................................................................. 6-10 6.1.2.9 燃料棒设计标准结论 ............................................................................. 6-10 6.2 安全性分析 ............................................................................................................. 6-12 6.2.1 LOCA ............................................................................................................. 6-12 6.2.1.1 全谱 LOCA 评估模型 ............................................................................. 6-13 6.2.1.1.1 热性能 ............................................................................................. 6-13 6.2.1.1.2 材料行为 ............................................................................................. 6-14 6.2.1.2 NOTRUMP 评估模型 ......................................................................6-15 6.2.1.2.1 材料特性 ......................................................................................6-15 6.2.1.2.2 材料行为 ......................................................................................6-16 6.2.2 非 LOCA 瞬态分析 ......................................................................................6-16 6.2.2.1 ADOPT 燃料芯块对非 LOCA 分析模型的影响 ................................6-16 6.2.2.2 验收标准 ......................................................................................6-16 6.2.2.3 非 LOCA 结论 ......................................................................................6-17 6.2.3 安全壳完整性分析 ................................................................................6-17 6.2.3.1 短期 LOCA 质量和能量(M&E)释放 ........................................................6-17 6.2.3.2 长期 LOCA 质量和能量(M&E)释放.....................................................6-18 6.2.3.3 短期蒸汽管破裂 M&E 释放........................................................6-19 6.2.3.4 长期蒸汽管破裂 M&E 释放........................................................6-19 6.2.3.5 结论.............................................................................................6-20 6.2.4 放射性后果分析.......................................................................6-20 6.2.4.1 瞬态输入的计算....................................................................................6-20 6.2.4.2 间隙分数.............................................................................................6-21 6.2.4.3 燃料核素清单.............................................................................6-21 6.2.4.4 结论.............................................................................................6-21 6.3 对核设计要求的影响................................................. 6-21 6.4 热工水力设计方法的适用性 ...................................................................... 6-22 6.5 许可标准结论 .............................................................................................. 6-22 6.6 第 6 章参考文献 .............................................................................................. 6-23
AACP 备用接入控制点 AC 交流电 ACP 接入控制点 AECC 备用应急控制中心 AGR 先进气冷反应堆 AIC 备用指示中心 ALARP 尽可能低 ASR 辅助停机室(Sizewell B) AWE 原子武器机构 BCDG 电池充电柴油发电机 BDB 超出设计基础 BGS 英国地质调查局 BLP 底线工厂 BUCESC 备用中央应急支援中心 BUCS 备用冷却系统 BUECC 备用应急控制中心 BUFS 备用进料系统 BWR 沸水反应堆 CATS 洁净空气列车系统 CCR 中央控制室 CEEHG 土木工程外部危险组 CEMS 连续应急监测系统 CESC 中央应急支援中心 CO 一氧化碳 COBR 内阁办公室简报室 COTS 商用现货 CR 状况报告 CSA 综合安全评估/压力测试考虑 CTO 中央技术组织 CTS 公司技术标准 CW 冷却水 CWI 安全壳注水DA 设计机构 DB 设计基础 DBE 设计基础事件 DBUE 可部署备用设备 DBUEERT 可部署备用设备应急响应小组 DBUEG 可部署备用设备指南 DC 直流电 DCIS 可部署通信和信息系统 DCS 多样化冷却系统 DECC 能源和气候变化部 DEFRA 环境、食品和农村事务部 DEPZ 详细应急计划区 DG 柴油发电机 DNB Dungeness B (AGR) DNO 配电网络运营商 DRT 损坏修复工具
摘要 - 采用抗量子的加密网络协议或量词后加密术(PQC)的问题对于使量子计算民主化至关重要。问题是紧迫的,因为实用的量子计算机将在未来几十年中打破经典的加密。过去的加密数据已经收集,可以在不久的将来被删除。采用后量子加密的主要挑战在于算法复杂性和硬件/软件/网络实现。现有网络基础设施将如何支持量子后加密术的宏伟问题仍未得到解答。本文描述了:i)在伊利诺伊大学Urbana-Champaign的NA型超级计算应用中心(NCSA)放置的新型量词后加密(PQC)网络仪器的设计; ii)关于PQC采用率的最新结果(安全壳 - SSH - SSH,运输层安全 - TLS等)。); iii)在关键科学应用中实施PQC的现状(例如Openssh或Scitokens); iv)抗量子的挑战; v)讨论潜在的新攻击。这是在国家规模的超级计算中心和织物测试台上对PQC采用的第一个大规模测量。我们的分析确定了迁移当前应用的途径,以备量子。我们的结果表明,只有Openssh和Google Chrome已成功实施了PQC,并获得了NCSA的OpenSSH连接的初始采用率为0.029%(20,556,816中的6,044个)来自主要的Internet Service Provers或诸如Oarnet,Google fiber liber wepp and,goog fiber webt(例如,Unigre Internet Service Service Provers)和U.Aarnet,Google fiber webs(U.S.) (瑞典),2023 - 2024年的总体采用率同比增长。
操作员态势感知 (SA) 对于确保任何工业设施安全运行至关重要,对于核电站 (NPP) 更是如此。核电站工业事故(按国际原子能机构 (IAEA) 国际核事件分级表 (INES) [ 1 ] 中 1(异常)至 7(重大事故)的严重程度等级升序排列)包括以下案例:加拿大乔克河国家研究反应堆 (NRX) (INES-5) — 控制室控制棒状态指示灯错误、机械故障以及控制室人员沟通不畅等多重故障导致安全关闭棒库意外拔出,造成反应堆功率在 5 秒内失控超过反应堆设计极限的四倍,导致 1952 年 12 月 12 日发生严重堆芯损坏;美国三哩岛核事故(INES-5)——设计不良、模糊的控制室指示器导致操作员失误,影响了紧急冷却水供应,导致 1979 年 3 月 28 日三哩岛 2 号机组 (TMI-2) 反应堆堆芯安全壳部分熔毁;苏联切尔诺贝利事故(INES-7)——人为因素和固有设计缺陷导致 4 号机组于 1986 年 4 月 26 日发生灾难性爆炸并释放放射性物质。从事故后报告 [ 2 – 4 ] 中可以看出,关键事故前兆包括:(1) 由于传统人机界面 (HMI) 设计中的人为因素相关缺陷导致态势感知能力下降;(2) 常态化、偏差化,导致核安全文化松懈; (3) 信息过载(看而不见效应 [ 5 ]),这是由于通过控制室 HMI(面板指示、通告等)向操作员呈现信息的速度太快。);以及 (4) 高度动态单元演进的错误心理模型导致认知错误,这是由于故障或有故障的传感器提供的工厂信息相互冲突,以及现场设备状态监控不正确。
3.1–3.7 分级方法 3.2–3.3 3.2 应使用分级方法确定对任何特定设施或活动进行安全评估的范围、程度、详细程度和工作量。3.3 在将分级方法应用于安全评估时,主要考虑的因素是设施或活动产生的潜在辐射风险的大小。这需要考虑正常运行中放射性物质的任何释放、预期运行事件和事故的潜在后果,以及发生可能产生严重后果的极低概率事件的可能性。审查结果 满足了要求。范围、程度、详细程度和工作量与核反应堆发生大量放射性释放的堆芯劣化事故的可能性相一致。按照美国核管理委员会的标准 DCD 格式,进行了安全分析,以确定设计和工程安全功能是否满足所需的安全功能。提供了有关如何实现美国核管理委员会、英国健康服务署和 WENRA 制定的安全目标和标准的详细信息。该设计利用了过去反应堆运行的经验,并满足了美国和欧洲公用事业的要求。事故分析的结果在 DCD 第 15 章中提供。分析遵循基于工厂条件分类的标准美国核管理委员会程序。分析涵盖正常运行、预期运行事件、设计基准事故、特殊事件和超设计基准事故。进行确定性和概率分析的目的是证明已达到足够的安全水平。考虑了发生极低概率事件但可能造成严重后果的可能性。特别是,设计特征符合 IAEA NS-R-1 要求,即“除了设计基础外,设计中还应考虑超出设计基础的特定事故(包括选定的严重事故)中工厂的性能”。特殊特征旨在通过冷却外表面来阻止反应堆压力容器内的熔融堆芯,从而避免对安全壳造成挑战。