目的:深部脑刺激 (DBS) 导线周围的射频 (RF) 组织发热是 MRI 期间众所周知的安全风险,因此需要制定严格的成像指南并限制允许的方案。植入导线相对于 MRI 电场的轨迹和方向导致不同患者的 RF 发热程度存在差异。目前,没有针对植入 DBS 导线颅外部分的手术要求,这导致临床导线轨迹和 RF 发热存在很大差异。最近的研究表明,在颅外导线轨迹中加入同心环可以减少 RF 发热。然而,环的最佳定位和轨迹修改在 MRI 期间增加安全裕度方面的量化效益仍然未知。在本研究中,作者系统地评估了可在 3T MRI 期间最大限度减少 RF 发热的 DBS 导线轨迹的特征,以制定安全进行术后 MRI 的最佳手术实践,并且他们介绍了这些修改后轨迹的首次手术实施方式。方法作者进行了实验来评估 244 种不同导线轨迹的最大温升。他们研究了同心环的位置、数量和大小对颅骨的影响。实验是在植入商用 DBS 系统的拟人模型中进行的,通过应用高特定吸收率序列(B 1+rms = 2.7 µ T)产生射频暴露。作者进行了重测实验来评估测量的可靠性。此外,他们还评估了成像标志和 DBS 设备配置扰动对低加热轨迹功效的影响。最后,两名神经外科医生在患者体内植入了推荐的修改轨迹,作者通过与未修改轨迹的比较来表征他们的射频加热。结果 最高温度升高范围为 0.09 ° C 至 7.34 ° C。作者发现,增加环路数量并将其放置在更靠近手术钻孔的位置,特别是对于对侧导线,可以大大降低射频加热。这些轨迹修改在手术过程中很容易融入,并将射频加热降低了三倍。结论 通过手术修改 DBS 导线轨迹的颅外部分可以大大降低 3T MRI 期间的射频加热。作者的结果表明,在 DBS 导线植入过程中可以很容易地对导线配置进行简单的调整,例如在钻孔附近设置小的同心环,以提高 MRI 期间患者的安全性。
稳健性和可靠性 许多领域在经典的设计约束列表中都具有功能安全性,例如汽车领域的 ISO 26262 标准。我们的工作旨在改进对可靠性的早期评估。环境干扰引起的错误。目标是降低开发和生产成本,能够在设计的早期阶段准确评估软错误和永久错误的潜在功能影响。我们最近提出了一种跨层故障模拟方法来执行关键嵌入式系统的稳健性评估,该方法基于事务级模型 (TLM) 和寄存器传输级 (RTL) 描述中的故障注入,以在模拟时间和模拟高级故障行为的真实性之间进行权衡。该方法的另一个重要特征是考虑全局系统规范,以便区分实际的关键故障和导致对系统行为没有实际影响的故障。该方法已应用于机载案例研究。2021 年,该方法通过迭代流程得到改进,既可以全局减少故障注入持续时间,又可以随着迭代改进 TLM 模型,从而实现在 TLM 和 RTL 级别注入故障的后果之间的良好相关性。2021 年开始的另一项研究旨在更好地评估(和预测)软件工作负载对微控制器和 SoC 等复杂数字组件可靠性的影响。最终,一个目标是定义一组代表性基准,以便在实际应用程序可用之前对关键系统进行可靠性评估。第一步是开发一种基于适用于多种处理器的虚拟平台的多功能分析工具,与 QEMU 的修改版本相对应。该分析流程已应用于 RISC-V 目标和 Mibench 软件,使我们能够更好地了解软件负载对 SoC 容错的影响。我们提出的指标“似然百分比”表明,使用我们的工具进行高级评估可以非常有效地获得有关程序行为的重要信息,与从参考指令集模拟器和硬件架构获得的结果一致。我们还表明,我们的分析工具使我们能够比较多个程序的行为并表现出特定的特征。主要目标是在 SoC 设计领域传输和应用 RAMS 方法和工具。这些数据有助于理解处理器架构将如何用于每个应用程序,从而了解根据软件负载可以预期的容错级别。我们提出了三个假设,这些假设必须通过更多的程序示例、多个硬件平台的使用以及最终在粒子束下的实际测试来证实。在自动质量或安全保证水平评估领域,我们提出了第一种方法,用于自动提取片上系统内有效和故障状态机的过程。通过此方法自动提取的数据是行为建模和 FMEA(故障模式和影响分析)分析的相关输入。该方法基于一种半自动化方法,用于在单粒子翻转 (SEU) 或触发器卡住的假设下系统地提取数字设计的故障模式。此过程旨在增强人为故障分析,并在复杂设备的质量保证过程中为 RAMS(可靠性、可用性、可维护性和安全性)框架提供输入。已经在 I2C - AHB 系统上进行了实验结果,为对整个 SoC [CI3] 进行完整且更复杂的分析奠定了基础。 由于技术规模扩大和晶体管尺寸越来越小并更接近原子尺寸,上一代 CMOS 技术在各种物理参数中呈现出更多的可变性。此外,电路磨损退化会导致额外的时间变化,可能导致时序和功能故障。为了处理此类问题,一种传统方法是在设计时提供更多的安全裕度(也称为保护带)。因此,使用延迟违规监视器成为必须。放置监视器是一项关键任务,因为设计师必须仔细选择最容易老化且可能成为给定设计中潜在故障点的位置。
美国机械工程师学会 (ASME) 已更新其在 asme.org 上的数字交付方式,影响之前购买的规范和标准 PDF。用户需要通过“我的帐户”中数字下载页面上的新链接重新下载在 2024 年 4 月 15 日之前购买的文档。要随时了解更新,用户可以注册电子邮件通知。ASME 第 VIII 部分第 2 部分对于设计和制造压力容器至关重要。它是美国机械工程师学会锅炉和压力容器规范的一部分,为制造压力容器提供指导。ASME VIII 第 1 部分和第 2 部分是 ASME 锅炉和压力容器规范的两个部分,每个部分都为设计和建造压力容器提供指导。主要区别在于设计裕度和材料允许应力的方法。第 2 部分采用了较低的设计裕度,因此与第 1 部分相比,材料允许应力更高。ASME 第 VIII 卷第 1 部分和第 2 部分之间的主要区别包括: - **范围**:涵盖压力容器的设计、制造、检验、测试和认证(第 1 部分),而第 2 部分则涵盖压力容器设计和建造的替代规则。 - **设计方法**:基于规则设计方法(第 1 部分),而第 2 部分则强调分析设计方法。 - **安全系数**:使用固定安全系数(第 1 部分),而第 2 部分则允许使用基于风险的安全系数,从而可能降低材料成本(第 2 部分)。与第 2 部分相比,ASME 第 VIII 卷第 1 部分涵盖更为保守的材料要求和规定的测试要求,从而允许使用更先进的材料并考虑断裂力学。下表总结了 ASME 第 VIII 卷第 1 部分和第 2 部分之间的主要区别:| 特点 | ASME 第 VIII 卷第 1 部分 | ASME 第 VIII 卷第 2 部分 | | --- | --- | --- | | 范围 | 涵盖压力容器的设计、制造、检查、测试和认证。| 压力容器设计和建造的替代规则。允许在设计方法上更灵活。| | 设计方法 | 基于规则设计方法。| 强调分析设计方法。| | 设计公式 | 为各种组件规定的公式和规则。| 允许使用更先进的分析方法和设计计算的灵活性。| | 安全系数 | 使用固定安全系数。| 允许使用基于风险的安全系数,从而可能降低材料成本。| | 材料要求 | 更保守的材料要求。| 允许使用更先进的材料并考虑断裂力学。| | 接头效率 | 固定接头效率值。| 根据接头类型和检查方法考虑接头效率。 | | 测试要求 | 规定的测试要求。| 提供基于风险分析和检查结果的测试灵活性。| | 疲劳分析 | 简化的疲劳分析。| 更详细的疲劳分析方法。| | 抗震设计 | 有限的抗震设计规定。| 抗震设计的具体规定。| | 风和外部载荷 | 规定的风和外部载荷公式。| 允许使用更先进的分析方法和设计计算灵活性。设计外部载荷的过程涉及考虑各种因素,包括风和外部压力。为确保安全,在某些情况下会应用更保守的安全系数。有限元分析 (FEA) 可用于更准确地评估这些力。但是,它在某些设计方法中的使用受到限制。在 ASME 第 VIII 条第 1 部分和第 2 部分之间做出选择时,必须考虑所设计压力容器的具体要求。第 1 部分提供了一种广泛使用的更直接的方法,而第 2 部分为需要精细安全系数的特殊应用提供了更大的灵活性。在 ASME 第 VIII 部分第 2 部分中,材料的允许应力是根据材料特性、设计条件和安全裕度确定的。这种方法可以根据每个容器的独特要求更精确地确定允许应力。与提供固定允许应力值的第 1 部分不同,第 2 部分可以对这些因素进行定制评估。ASME 规范中规定的最大允许应力值随温度而变化。在第 1 部分中,根据规则进行设计,安全系数为 3.5,60,000 psi 抗拉强度材料的最大允许应力值为 17,142 psi。在第 2 部分中,根据分析进行设计,安全系数较低,为 2.5,相同材料的最大允许应力变为 24,000 psi。由于要求更严格,一些公司更喜欢为其压力容器采用第 2 部分标准。其他公司可能会根据成本考虑在第 1 部分和第 2 部分之间进行选择。制造商通常为低压容器选择第 1 部分,为高压容器选择第 2 部分。在比较 ASME VIII 第 1 部分和第 2 部分的成本时,必须考虑材料和人工方面的节省是否超过工程、质量控制和管理方面的额外费用。传统上,大型和厚容器适合第 2 部分,但随着 2017 年版第 1 级容器的引入,更多场景现在可以从成本降低中受益。第 2 部分需要更少的加强垫,并允许使用更薄的喷嘴锻件,从而节省更多成本。总之,如果您是从事压力容器设计的专业人士,了解 ASME 第 VIII 部分第 2 部分至关重要。PetroSync 的培训计划为寻求压力容器设计专业知识的专业人士提供全面的学习机会,帮助他们做出明智的决策并确保安全高效的运营。通过将知识扩展到 ASME 第 VIII 部分第 2 部分之外,包括 PetroSync ASME 第 VIII 部分培训,个人可以进一步提高技能并始终站在行业发展的前沿。