准混沌 (QC) 生成器是一类特殊的伪随机数生成器 (PRNG),在不同领域有多种实现方式。它们旨在生成某些数字序列的伪随机行为,以便以安全方式掩盖要处理或传输的信息 [1–5]。具体而言,QC 生成器非常适合加密,更广泛地说,适合对信号进行编码/解码以实现安全通信 [6–8]。因此,QC 生成器被认为特别适合在安全和隐蔽数据传输领域挖掘离散时间电路的潜力。过去,已提出使用余数系统 (RNS) 架构来实现 QC 生成器 [9],因为它们利用模块化算法,可以以直接的方式获得伪随机行为,并且具有关于超大规模集成电路 (VLSI) 部署、模块化、速度、容错和低功耗的有趣特性 [10]。本文重点介绍模块化算法的使用,不一定基于 RNS,以便获得可以连续映射到量子数字电路中的 QC 生成器的灵活实现。为此,QC 生成器可以通过非线性
卫星互联网是即将推出的第六代网络不可或缺的组成部分,用于提供全球宽带互联网接入服务。由于卫星地面通信的开放性,卫星互联网的安全问题一直是工业界和学术界关注的重要问题。尽管许多研究人员专注于卫星互联网的安全通信,但相关文献却出奇地少,没有对最先进的安全技术的全面概述。本文对各种卫星互联网场景的安全通信进行了深入研究。基于不同的安全机制,我们首先将现有的卫星互联网安全通信工作分为两类:基于密码学和基于物理层安全。前者包括基于经典加密和基于量子加密的安全通信,后者根据所应用的技术进一步分为基于预编码、基于协作干扰、基于中继选择和基于物理层认证的安全通信。最后,我们提出了一些未来的研究方向。
US FDA在两次独立的预定会议中证实(1),上述临床前安全研究足以支持单位RVSVN4CT1-AMARV GP1疫苗的临床评估。
摘要人类呼吸的分析是一个非常活跃的研究领域,这是由在护理点上快速,容易且无创的工具进行医学诊断的愿景的驱动。毫米波频谱(MMWGS)是一种适合此应用的新型技术,因为它具有高灵敏度,特异性和选择性。最重要的是,它提供了适用于医生办公室或医院的紧凑型低成本系统的视角。在这项工作中,我们证明了使用MMWGS在医疗环境中获得的呼吸样品分析,并评估该方法的有效性,可靠性以及局限性和观点。为此,我们研究了来自慢性阻塞性肺病患者的28个重复样品,并将结果与气相色谱 - 质谱法(GC-MS)进行了比较。使用无校准拟合模型进行了数据的量化,该模型精确地描述了数据并提供了绝对数量。对于乙醇,丙酮和乙腈,结果与GC-MS测量非常吻合,并且与GC-MS一样可靠。重复样本偏离平均值仅6%至18%。MMWG的检测极限在很大程度上取决于分子物种。 例如,通过MMWGS系统可以将乙腈追溯到1.8×10 - 12 mol,这与GC-MS系统相当。 我们观察到甲醛和乙醛之间以及乙腈和乙醛之间的丰富性相关性,这证明了MMWGS在呼吸研究中的潜力。MMWG的检测极限在很大程度上取决于分子物种。例如,通过MMWGS系统可以将乙腈追溯到1.8×10 - 12 mol,这与GC-MS系统相当。我们观察到甲醛和乙醛之间以及乙腈和乙醛之间的丰富性相关性,这证明了MMWGS在呼吸研究中的潜力。
摘要 - 芯片上的许多核心系统(MCSOC)包含操作元素(PES),系统附加到系统的外围设备以及连接它们的NOC。这些系统具有不同的流动,遍历了NOC:PE-PE和PE-PERPHERAL流动。恶意硬件或软件可能会因为资源共享功能而阻碍系统安全性,例如用于多任务处理的CPU共享或共享属于不同应用程序的流量的NOC链接。将应用程序隔离为安全限制(例如安全区域(SZ))的方法保护PE-PE流动与文献中报告的大多数攻击。提出的提案用文献中与外围设备进行通信的方法很少,其中大多数都集中在共享内存保护上。本文介绍了一种原始方法,使用访问点-SEMAP的安全映射,该方法为SZS创建映射策略,以及与IO设备的沟通策略,以保护PE-外布流。结果表明,应用程序执行时间不会通过应用SEMAP来惩罚,与最新方法相比,具有优势。在安全性方面,SEMAP成功抵抗了攻击活动,阻止了试图进入SZ的恶意数据包。索引项 - 确定性,基于NOC的多核,安全区域,外围设备。
2.1. 国防部首席信息官。...................................................................................................................... 6 2.2. 国防信息系统局(DISA)局长。...................................................................................... 6 2.3. 国防部负责采购和保障的副部长(USD(A&S))....................................................... 6 2.4. 国防部负责情报和安全的副部长。......................................................................................... 7 2.5. 国防部副部长(主计长)/首席财务官 (USD(C)/CFO)............................................................................................. 7 2.6. 国防部负责人事和战备的副部长......................................................................................................... 7 2.7. 负责 PS、PSAP 或 ECC 的国防机构和国防部实地活动的主管............................................................................................. 8 2.8. 各军种部长和美国海岸警卫队司令。8 2.9. SECAR。 ................................................................................................................................ 8 2.10. 国民警卫队局局长. .............................................................................................................. 8 2.11. 参谋长联席会议主席. .............................................................................................................. 9 2.12. 作战指挥官. ...................................................................................................................... 9 第 3 部分:国防部 PSC IT 生态系统 ............................................................................................. 10 第 4 部分:国防部 EMWN ............................................................................................................. 12 词汇表 ............................................................................................................................................. 14
T.K. Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J. Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。 inf。 计算。 8,431–458(2007)T.K.Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J. Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。 inf。 计算。 8,431–458(2007)Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J.Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。inf。计算。8,431–458(2007)
量子密钥安全通信协议通过增强的超密度编码Mario Mastriani摘要在过去几十年中,量子密码学已成为量子通信的最重要的分支之一,并在未来的量子互联网上进行了特定的投影。正是在量子密码学中,其中两种技术高于其他所有技术:量子密钥分布(QKD)和量子安全直接通信(QSDC)。第一个具有四个漏洞,该漏洞与通信系统中所有点的钥匙暴露有关,而第二个则在当前使用的所有变体中都有明确的实施问题。在这里,我们提供了QKD和QSDC技术的替代方法,称为Quantum Key Secure Communication(QKSC)协议,并在两个免费的访问量子平台上成功实现。关键字量子纠缠•量子互联网•量子中继器•量子传送范围ID:0000-0002-5627-3935 MARIO MASTRIANI:mmastria@fiu.edu knight knight knight Computing and Computing and Computing&Information of Computing and Information of Compution and Information of Modight of Information&Information of Information of Information of Information of Information of Florida International University,11200 S.W.迈阿密,佛罗里达州第8街33199,美国1简介迈阿密,佛罗里达州第8街33199,美国1简介
决议中提到的监管系统的基准测试wha 67.20意味着一个结构化和记录的过程,通过该过程,成员国(MSS)可以识别和解决差距,目的是达到与稳定,功能良好,功能良好和集成和集成的监管系统相称的监管监督。使用WHO全球基准测试工具是评估监管医疗产品监管系统的主要手段。该工具和基准测试方法使谁和监管机构能够确定优势领域以及改进领域;促进制定制度发展计划(IDP)以建立优势并解决所确定的差距;协助优先考虑IDP实施的投资;并帮助监视进度。WHO从1997年开始评估监管系统,使用一组旨在评估疫苗监管计划的指标。自那时以来,已经引入了几种工具和修订,并且已通过150多个国家的监管系统进行了基准测试。在2013年开始了GBT评估药品和疫苗计划的统一制定,此前是内部和外部的基准测试工具,以确保政策连贯性,最大化监管结果并减轻监管机构的负担1。本手册的结构是帮助理解基准活动的背景以及对GBT的深入了解,以及与计划和计划,准备,准备,进行和报告基准测试活动有关的过程和程序。众所周知,手册的大小很大,因此强烈建议使用文档的目录(TOC)进行导航并查看读者/用户针对的部分。此外,本手册不是独立文档。相反,它与其他相关的手册和程序相辅相成。在需要时,建议手册的用户参考其他文档,这些文件可能会受益于更好的理解和适当的相关过程实施。最后,如果与本手册或相关文档有关的任何查询,包括与GBT相关的查询,则应将其介绍给NRA_ADMIN@WHO.INT的WHO WHO监管RSSTEMS(RSS)团队。
流感B Yamagata谱系细胞培养的1种候选疫苗病毒用于开发和生产疫苗,用于2021年南半球流感季节,使用认证的细胞系(例如MDCK 33016 PF A,NIID-MDCK b)由WHO全球流感监测和响应系统(GISRS)的WHO合作中心(CCS)进行。WHO CCS还对细胞培养的候选疫苗病毒(CCCVV)进行抗原和遗传分析。除非另有说明,否则这些CCCVV已通过对细胞培养的双向出血抑制(HI)测试(HI)试验传播了与WHO建议2相匹配的原型病毒。WHO CCS对这些CCCVV进行了其他测试(包括不定代理)。国家或区域控制当局通常批准每个国家使用的流感疫苗的制造,组成和制定3。制造商应就使用这些CCCVV进行流感疫苗生产的适用性咨询相关的国家或区域控制当局。