第2节。目的。bess在此类电池中使用的技术和电池倾向的趋势构成了独特的安全隐患。该镇依靠其志愿消防公司来打击该镇的火灾,并在必要时撤离房主。大多数贝斯都经过远程监控,这意味着在发生此类火灾时通常没有向城镇和第一响应者提供任何通知。此外,在该镇的大多数人中,没有公共水可用于消防,这给志愿消防公司带来了额外的负担。第3节。权威根据市政本国统治法第10条和第22条采用本地方法律。仔细审查后的镇议会确定它是在公共卫生,安全和福利中,不允许公用事业规模BESS BESS无论是与电动机网格还是太阳能或风力项目相关联。第4节。废除风能法第六节第10小节,并替换为以下内容:“所有电池和控制电池在内的所有电气和控制设备均应标记并固定以防止未经授权的访问。这样的设备。”第5节。电池储能系统
由于其高的理论容量(3860 mAh g-1)和低电化学电位,体心立方(BCC)相的锂金属(Li Metal)被视为高能量密度可充电锂电池的终极负极材料。[1] 然而,由于锂金属形态不稳定性(LMI)[2]在重复循环中出现,导致内部短路、库仑效率低、电解质消耗、容量衰减迅速和安全隐患,锂金属电池的实际部署长期以来受到阻碍。[3–9] 锂金属可充电电池存在两个基本问题:锂枝晶穿透引起的短路会带来重大安全隐患[10,11] 和低库仑效率限制循环寿命。 [12] 我们认为前者是由于电沉积过程中锂金属受到压缩引起的,而后者是由于剥离过程中的拉应力引起的,从而引起空化、电子逾渗损失和死锂金属,以及固体电解质 (SE) 侧的断裂和离子逾渗损失。尽管迄今为止在阐明沉积半循环中锂金属的生长机制方面取得了很大进展 [13,14],但剥离半循环中锂金属的动力学仍然神秘莫测。在控制锂金属沉积/剥离的所有因素中,SE 界面相 (SEI),即锂金属与液体或固体电解质之间形成的固体界面,被认为对锂金属的形貌和生长/剥离动力学具有关键影响。 [15] 由于有机液体电解质在低于 ≈ 1 V (相对于 Li + /Li)时具有电化学还原不稳定性[2],SEI(实际上是一种临时的 SE 纳米膜)的形成被认为是液体电解质电池正常运行的必要条件。 [16–22] 或者,可以使用多孔混合离子电子导体 (MIEC) [11,23,24](它可能对锂金属具有绝对的热力学稳定性)来引导其沉积和剥离并控制 LMI。 无论可充电电池使用液体还是固体电解质/MIEC,[11,23,24] 剥离过程中张力驱动的 LMI 问题非常普遍,需要小心处理。根据能斯特方程,如果 U = 0 V,电位参考(Li + /Li)是基于环境压力(P = 1 atm)BCC Li Metal 定义的,那么进一步加压的Li Metal 将使平衡电位移动 U eq = −∆ PV Li / e,其中 V Li = 21.6 Å3 是 BCC 相中锂原子的体积,e 是基本电荷,[25,26] 因为沉积的锂原子需要抵抗额外的压力才能加入
将研究重点放在高能量密度二次电池的探索上。锂金属阳极 (LMA) 被认为是下一代锂离子电池 (LIB) 有前途的替代阳极。2锂金属被称为“圣杯”阳极,具有 3,860 mA hg 1 的极高容量、低密度 (0.59 g cm 3) 和低电化学电位,导致令人印象深刻的重量和体积能量密度。第一代锂金属电池 (LMB) 可以追溯到 20 世纪 70 年代,当时 Whittingham 提出使用锂作为阳极,使用 TiS 2 作为阴极。3虽然 Li8TiS 2 电池表现出优异的能量密度和倍率性能,但不受控制的锂沉积会引发热失控和安全隐患。因此,对锂金属基二次电池的研究陷入停滞。随着表征技术的发展和对高能量密度器件的需求不断增长,人们提出了对锂金属负极失效机理和相关改进的全面理解。例如,Zhang 等人报道,枝晶会通过降低自热温度 (T 1) 来加速 Li 8 LiNi 0.5 Co 0.2 Mn 0.3 O 2 软包电池中的热失控。4
第 1 章:总则 1.1 引言 在航空业,培训一直是提高人员效率的关键因素,既包括操作性能,也包括安全性。培训的有效性还取决于培训是否能够在安全和性能这两个主要组成部分之间取得平衡。客舱安全是整体飞行安全不可分割的一部分,在培训中涵盖了广泛的领域。与之前侧重于发生事故时飞机的疏散相反,如今的客舱安全意味着: 有助于防止事故和事件, 保护飞机上的乘客免受客舱内可能存在的安全隐患的伤害 在发生紧急情况时将伤害降到最低,提高生存能力 毋庸置疑,安全只有通过主动的安全管理才能实现,包括识别隐患和降低安全风险,并且需要特定的知识和技能。因此,考虑到机组人员在管理安全方面的作用,有必要引入一个有效的培训系统,以便培养出有能力的机组人员,使他们在正常的日常飞行中履行与安全相关的职责,并在任何异常或紧急情况下自信地采取行动。这本名为“机组人员培训手册,2015”的手册旨在建立机组人员培训课程和程序的一致性
简介和背景 本综合土地利用规划 (CLUP) 依据加州公共事业法典**第 4 章第 3.5 条制定。本规划由机场规划顾问 Ray A. Vidal 与圣贝纳迪诺县机场土地利用委员会 (ALUC)、赫斯珀里亚市规划部以及赫斯珀里亚机场所有者 Mojave Aviation, Inc. 的工作人员共同制定并得到其协助。航空和机场的独特元素要求在规划机场与周边社区的和平安全共处时要给予特别考虑。因此,加州立法机构颁布了机场土地利用规划法,旨在: - 确保州内每个公共机场及其周边地区的有序发展,从而促进依据第 21669 条采用的加州机场噪音标准的总体目标和目的,并防止产生新的噪音和安全问题。 - 确保机场有序扩张,并采取土地使用措施,尽量减少公众在公共机场周边地区受到过度噪音和安全隐患的影响,只要这些区域尚未用于不相容的用途,从而保护公众健康、安全和福利。法规规定的遵守机场规划法的一般机制是各县建立 ALUC。在
摘要:安全研究已发现注意力是空中交通管制中事件和事故的反复原因。然而,人们对导致空中交通管制绩效下降的确切注意力状态知之甚少。因此,我们调查了 150 名法国途中空中交通管制员,了解文献中七种注意力下降状态的成因及其对感知合作、安全和绩效的影响:与任务相关和与任务无关的走神、精神超负荷、注意力不集中和失明、注意力熵和固执。我们的研究结果表明,与任务相关和与任务无关的走神最为普遍,但对感知安全的影响最小。相反,注意力不集中和注意力熵报告较少,但被认为是一个重大的安全隐患,而注意力不集中会影响合作。大多数状态在工作量水平上都与文献一致。然而,没有其他因素(如轮班工作)被确定为这些状态的原因。总体而言,这些发现表明,“注意力”对于 ATC 来说不是一个足够具体的主题,因为注意力问题可能发生在各种情况下,并产生不同的影响。就安全而言,注意力盲视应该是进一步研究的主要目标。神经人体工程学尤其有助于制定动态对策来减轻其影响。
航空是一种复杂的运输系统,安全至关重要,因为飞机故障往往会造成人员伤亡。预防显然是航空运输安全的最佳策略。从过去的事故数据中学习以防止潜在事故发生已被证明是一种成功的方法。为了防止潜在的安全隐患并制定有效的预防计划,航空安全专家从事故报告中确定主要因素和促成因素。然而,如今安全专家的审查过程已经变得非常昂贵。由于信息技术的加速发展以及商业和私人航空运输业的增长,事故报告的数量正在迅速增加。因此,应应用先进的文本挖掘算法来帮助航空安全专家促进事故数据提取过程。本文重点介绍如何构建基于深度学习的模型来识别事故报告中的因果因素。首先,我们使用来自航空安全报告系统 (ASRS) 的大约 200,000 份合格事故报告准备用于训练、验证和测试的数据集。十、我们采用开源自然语言模型作为基线,该模型经过大量维基百科文本训练,并使用事件报告中的文本对其进行微调,以使其更适合我们特定的研究任务。最后,我们构建并训练基于注意力机制的 lo
TR 是电池系统最危险的安全隐患。TR 始于电池产生过多的热量,而这些热量无法充分消散,从而导致电极和电解质材料发生一系列放热反应。4 这些反应会产生气体,从而给电池加压。高温和高压共同作用,经常会导致电池外壳爆裂,5 导致热固体、熔融金属、蒸汽和剧毒气体剧烈喷出。6,7 此外,可燃喷出物(如 H 2 气体和蒸发的有机物)可能着火,从而加剧能量释放。8,9 电池化学成分、9 材料数量、充电状态 (SOC) 10 和老化历史 11 在很大程度上决定了 TR 期间释放的能量和材料。因此,虽然更高容量的化学成分和更高的电池电压会增加电池组的能量密度,但它们也会降低 TR 起始温度,从而增加能量释放。 6,8,9,12 挤压、穿透和外部短路都可能引发 TR,13-17 通常会导致多个电池同时进入 TR。此类事件非常复杂,难以缓解,通常需要有关电池环境的信息(例如,电池在电动汽车内的位置)才能设计出足够的安全措施。另一方面,单电池 TR 可以在电池组级别进行管理。
借款人可以使用第 203(k) 条融资进行的改造包括:结构改造和重建;房屋功能的现代化和改进;消除健康和安全隐患;改善外观和消除陈旧现象的改造;翻修或更换管道;安装水井和/或化粪池系统;添加或更换屋顶、排水沟和落水管;添加或更换地板和/或地板处理;重大景观工程和场地改善;增强残疾人的可访问性;进行节能改进。第 203(k) 条为购买或再融资和翻修至少一年的房屋提供抵押贷款保障。贷款收益的一部分用于支付卖方,或者,如果是再融资,用于偿还现有抵押贷款,剩余资金存入托管账户,并在翻修完成后释放。翻修费用必须至少为 5,000 美元,但房产总价值仍必须在该地区的 FHA 抵押贷款限额内。房产价值由以下两种方式确定:(1) 修复前的房产价值加上修复成本,或 (2) 修复后房产评估价值的 110%,以较低者为准。申请人必须通过 FHA 批准的贷款机构提出申请。
人工智能驱动的检查利用人工智能来改善机构(包括学校、医院、工厂和政府机构)监督合规性、监控流程和维持质量标准的方式。通过应用人工智能技术,可以更快地进行检查,并且更加准确和一致。人工智能系统从各种来源(例如摄像头和传感器)收集数据,然后使用机器学习算法来分析这些信息、识别模式并检测潜在问题。这些系统可以自动生成综合报告,强调关键发现并建议改进领域,从而简化流程并确保一致性。人工智能的一个主要优势是它能够在潜在问题(例如设备故障或安全隐患)发生之前对其进行预测。这种预测能力使机构能够实施预防措施并就政策和资源分配做出基于数据的决策。此外,人工智能支持实时监控,使机构能够迅速应对任何新出现的问题。总之,人工智能驱动的检查提高了效率、准确性和可扩展性,同时通过及早发现问题来帮助降低成本。这些系统在许多行业中都有广泛的应用,但也带来了挑战,例如数据隐私问题和集成的复杂性。随着人工智能技术的进步,这些检查系统预计将变得越来越普遍,从而大大改善机构监督和管理。