由于其高的理论容量(3860 mAh g-1)和低电化学电位,体心立方(BCC)相的锂金属(Li Metal)被视为高能量密度可充电锂电池的终极负极材料。[1] 然而,由于锂金属形态不稳定性(LMI)[2]在重复循环中出现,导致内部短路、库仑效率低、电解质消耗、容量衰减迅速和安全隐患,锂金属电池的实际部署长期以来受到阻碍。[3–9] 锂金属可充电电池存在两个基本问题:锂枝晶穿透引起的短路会带来重大安全隐患[10,11] 和低库仑效率限制循环寿命。 [12] 我们认为前者是由于电沉积过程中锂金属受到压缩引起的,而后者是由于剥离过程中的拉应力引起的,从而引起空化、电子逾渗损失和死锂金属,以及固体电解质 (SE) 侧的断裂和离子逾渗损失。尽管迄今为止在阐明沉积半循环中锂金属的生长机制方面取得了很大进展 [13,14],但剥离半循环中锂金属的动力学仍然神秘莫测。在控制锂金属沉积/剥离的所有因素中,SE 界面相 (SEI),即锂金属与液体或固体电解质之间形成的固体界面,被认为对锂金属的形貌和生长/剥离动力学具有关键影响。 [15] 由于有机液体电解质在低于 ≈ 1 V (相对于 Li + /Li)时具有电化学还原不稳定性[2],SEI(实际上是一种临时的 SE 纳米膜)的形成被认为是液体电解质电池正常运行的必要条件。 [16–22] 或者,可以使用多孔混合离子电子导体 (MIEC) [11,23,24](它可能对锂金属具有绝对的热力学稳定性)来引导其沉积和剥离并控制 LMI。 无论可充电电池使用液体还是固体电解质/MIEC,[11,23,24] 剥离过程中张力驱动的 LMI 问题非常普遍,需要小心处理。根据能斯特方程,如果 U = 0 V,电位参考(Li + /Li)是基于环境压力(P = 1 atm)BCC Li Metal 定义的,那么进一步加压的Li Metal 将使平衡电位移动 U eq = −∆ PV Li / e,其中 V Li = 21.6 Å3 是 BCC 相中锂原子的体积,e 是基本电荷,[25,26] 因为沉积的锂原子需要抵抗额外的压力才能加入
主要关键词