摘要在本文中,我们介绍了使用多物理学方法对定向能量沉积(DED)添加剂制造(AM)模拟的研究。我们在流体,固体力学和层流物理学中使用传热的组合来准确模拟DED过程。模拟提供了有关熔体池温度的详细信息,同时为沉积的每一层材料使用各种过程参数。的结果证明了多物理学方法在DED AM期间对各种物理现象之间复杂相互作用的洞察力的重要性。研究结果对DED AM过程的优化具有重要意义。关键字:添加剂制造,直接能量沉积,数学建模,模拟,comsol,温度
在基于激光的金属粉末的定向能量沉积中,使用优化参数可以使用无缺陷的材料,而与这些优化的参数不同,通常会导致高孔隙率,高稀释度,高稀释度或不同的轨道几何形状。构建复杂的地理网格时的主要挑战之一是沉积的几何和热条件正在不断变化,这需要在生产过程中调整过程参数。为了促进此过程,可以使用诸如热摄像机之类的传感器从过程中提取数据并调整参数以保持过程稳定,尽管外部干扰。在这项研究中,研究了从同轴热摄像机中提取的不同信号并进行了比较以优化过程。为了研究这种可能性,以恒定激光功率沉积了五个重叠的轨道,以提取平均像素值以及熔体池面积,长度,宽度和方向。每个轨道沉积的行为是根据激光功率建模的,这些模型用于计算和测试基于不同信号的激光功率降低策略。结果表明,熔体池面积是用于有效过程控制的最相关的信号,导致稳定过程,仅轨道到轨道的信号变化的±1.6%。
多主元合金为合金开发开辟了广阔的成分空间。巨大的成分空间需要快速合成和表征以识别有前途的材料,以及合金设计的预测策略。定向能量沉积增材制造被证明是一种合成 Cr-Fe-Mn-Ni 四元系合金的高通量技术。一周内合成了 100 多种成分,探索了广泛的成分空间。可实现 ±5 at% 以内的均匀成分控制。快速合成与联合样品热处理(25 个样品对 1 个样品)和自动表征相结合,包括 X 射线衍射、能量色散 X 射线光谱和纳米硬度测量。然后使用平衡开发和探索的主动机器学习算法将测量属性的数据集用于预测强化模型。使用合金成分训练表示晶格畸变的学习参数。这种快速合成、表征和主动学习模型的结合产生了比以前研究的合金强度明显更高的新合金。
摘要 各行业采用金属增材制造受到沉积部件中残余应力和变形的阻碍。定向能量沉积过程中的大热梯度通常会导致最终沉积物中出现残余应力。参数优化主要用于缓解残余应力。然而,工艺参数的影响是材料特定的。当前的研究旨在研究层间停留时间对高强度钢合金定向能量沉积中残余应力的影响。样品以三个层间停留时间水平沉积。使用 X 射线衍射测量表面和体积残余应力。发现表面和体积残余应力都随着层间停留时间的增加而增加。
“…在功能上被划分为离散的、有凝聚力的、独立的单元,并具有明确定义的接口,允许用来自其他来源的类似组件或产品替换这些单元,同时对现有单元的影响最小。”
国防部联合出版物 3-13《电子战 1》将定向能 (DE) 描述为:一个涵盖产生集中电磁能束或原子或亚原子粒子的技术的总称。定向能武器是一种主要使用定向能作为直接手段来禁用、损坏或摧毁敌方设备、设施和人员的系统。定向能战争是一种军事行动,涉及使用定向能武器、设备和对抗措施对敌方设备、设施和人员造成直接损坏或摧毁,或通过损坏、破坏和扰乱来确定、利用、减少或防止敌方对电磁频谱 (EMS) 的使用。
添加剂制造和新材料正在发展,多个同事和组织负责NASA HR-1的发展和发展。作者要感谢SLS液体发动机办公室(LEO)计划以及快速分析和制造推进技术(RAMPT)提供资金和支持以开发流程并推进这种合金。我们要感谢Johnny Heflin,Keegan Jackson和John Fikes提供了项目领导。我们要感谢我们的行业和学术界合作伙伴,包括RPM创新(RPMI),Beam,Fraunhofer,Formalloy和Auburn University的Nima Shamsaei(Rampt公共私人合作伙伴),以及阿拉巴马大学(UAH)大学(UAH)的Judy Schneider(UAH)(UAH)(UAH)开发和特征分类的sampemples。我们还要感谢提供原料粉的各种供应商,包括均质化金属公司(HMI),Praxair和Powder Alloy Corporation(PAC)。热处理是一项关键操作,我们的专家Pat Salvail,Kenny Webster和David Cole提供了出色的支持。我们还要感谢NASA GRC Counterparts,包括David Ellis,Justin Milner,Chris Kantzos,Ivan Locci以及许多其他帮助评估和表征样本的人。此外,我们认识到其他工程师在整个开发和测试中都提供了投入,包括托马斯·蒂斯利(Thomas Teasley),克里斯·普罗尔兹(Chris Protz),威尔·蒂尔森(Will Tilson),布莱恩·韦斯特(Brian West),凯瑟琳·贝尔(Brian West),凯瑟琳·贝尔(Catherine Bell),萨曼莎·麦克莱罗(Samantha McLeroy)以及MSFC,GRC和工业的许多其他工程。
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
定向能量沉积 (DED) 描述了一类增材制造 (AM) 工艺,其中聚焦热能用于在沉积材料时熔化材料,这在指南 F3187 中有详细描述,并提供了除既定工艺之外的额外制造选项。DED 有可能减少制造时间和成本,并提高零件功能性。通常,DED 用于处理金属原料以执行以下任务之一:制造净形状和近净形状零件、在常规加工的零件上制造特征、进行表面改性(包覆)以防止磨损和腐蚀,或通过向破损或磨损的零件添加金属来修复金属零件。DED 工艺根据几个维度而有所不同,包括原料类型(线材或粉末)、能量源(激光、电子束、电弧、等离子)、能量源数量和机器架构。一些实施方案包括减材工艺,以将零件和特征加工成最终尺寸。一些实施方案利用一个或多个实时传感器来监控各种性能指标,例如熔池温度或尺寸。从业者了解传统的、长期存在的制造工艺(例如切割、连接和成型工艺,例如通过机械加工、焊接或铸造)的优势和劣势,并在设计阶段和选择制造工艺时给予适当的考虑。就 DED 和 AM 而言,设计和制造工程师的经验通常有限。没有与传统工艺相关的限制,DED 的使用为设计师和制造商提供了高度的自由度,这需要了解该工艺的可能性和局限性。本设计指南通过提供有关 DED 零件和特征的典型特征的信息、对这些特征基于工艺的原因的见解以及对工艺能力和局限性的理解,为不同的 DED 技术提供指导。这些信息和理解应该为设计师提供指导,他们可以利用这些指导来利用 DED 功能、绕过限制进行设计并避免工艺缺点。本文件扩展了 ISO/ASTM 52910(通用设计指南),并补充了金属和聚合物材料的粉末床熔合设计指南(ISO/ASTM 52911-1 和 -2),以及正在开发的其他工艺特定设计指南。此外,它专门针对 F3187 指南中的通用 DED 描述并以此为基础。