摘要-实时数字控制计算机的可靠性不仅取决于所用硬件和软件的可靠性,还取决于计算控制输出的时间延迟,因为计算时间延迟会对控制系统性能产生负面影响。对于给定的固定采样间隔,计算时间延迟的影响分为延迟和损失问题。当计算时间延迟非零但小于采样间隔时发生延迟问题,而当计算时间延迟大于或等于采样间隔时发生损失问题,即控制输出丢失。分析这两个问题作为评估实时控制系统的一种手段。首先,对计算时间延迟的影响进行了一般分析,并给出了系统稳定性的必要条件。然后,我们对计算时间延迟对机器人控制系统的影响进行了定性和定量分析,推导出了计算时间延迟相对于系统稳定性和系统性能的上限。
开创性的研究表明,通过广泛调谐的神经元的大量人群的综合作用,而不是通过少量的高度调节神经元1来编码。几个系统为大脑功能中的“分布式编码”提供了进一步的证据2,3。然而,这种投资使用了反复试验的单个神经元的串行记录,因此无法以单次试验来证明对大脑信息编码的神经元种群。同时(平行)神经元种群记录的技术可以使用随机抽样的神经元种群对大脑中的信息进行出人意料的编码,尤其是在体感4-6和边缘系统中的7。,我们通过从慢性植入的电动机(MI)皮层(MI)皮层和腹侧(VL)Thalamus中的慢性植入电极阵列中记录来解决这些问题,以前肢移动任务进行训练的大鼠。我们问了三个问题。首先,在Mi Cortex和/或Vl Thala-Mus编码前肢运动轨迹中,神经元种群活性的线性或非线性数学转化如何?第二,这些“电机代码”是否可以用于生成在线“神经元群体功能”,以实时控制机器人手臂,以足够的精度代替受过训练的运动任务中的动物前肢运动?第三,可以以这种神经生物的模式训练(奖励神经活动本身)会改变或消除先前条件的运动?