数字孪生技术的快速发展极大地改变了虚拟城市在智慧城市和交通中的应用方式。特别是,数字孪生提供了一个可以开发和测试各种移动系统、算法和策略的游乐场。本研究提出了一种用于城市移动操作系统的数字孪生框架DTUMOS。我们构建了一个开源框架,可以轻松灵活地应用于全球任何城市和移动系统。一种结合基于AI的预计到达时间模型和车辆路由器算法的新型架构使DTUMOS能够在实施大规模移动系统时实现高速性能,同时保持准确性。与现有的最先进的移动数字孪生相比,所提出的DTUMOS在可扩展性、速度和可视化方面具有明显的优势。使用首尔、纽约市和芝加哥等大都市的实际数据验证了性能和可扩展性。DTUMOS 的轻量级开源环境为开发各种基于模拟的算法和定量评估未来移动系统政策的有效性开辟了一个新时代。
COVID-19的大流行和正在进行的政治和地区冲突对全球供应链产生了极大的有害影响,从而导致物流运营和国际运输造成重大延误。最紧迫的问题之一是围绕产品可用性日期的不确定性,这对于公司生成有效的物流和运输计划的关键信息。因此,准确预测可用性日期在执行成功的物流运营中起着关键作用,最终最大程度地减少了总运输和库存成本。我们利用数值和分类功能研究了通用电动(GE)气体功率的产品可用性日期的预测日期。我们评估了几种回归模型,包括简单回归,拉索回归,脊回归,弹性网,随机森林(RF),梯度增强机(GBM)和神经网络模型。基于实际数据,我们的实验表明,基于树的算法(即RF和GBM)提供了最佳的概括误差,并且优于测试的所有其他回归模型。我们预计,我们的预测模型将帮助公司管理供应链中断并降低供应链的风险。
由于沟通成本高,联合学习(FL)系统需要采样每一轮培训的客户的子集。因此,客户采样在FL系统中起着重要作用,因为它影响了用于训练机器学习模型的优化算法的收敛速率。尽管其重要性,但如何有效地对客户进行采样的工作有限。在本文中,我们将客户取样作为在线学习任务,并使用Bandit反馈进行,我们使用在线随机镜下降(OSMD)算法来解决,该算法旨在最大程度地减少采样差异。然后,我们在理论上展示了我们的采样方法如何在广泛使用的均匀采样上提高联合优化算法的收敛速度。通过模拟和实际数据实验,我们从经验上说明了拟议的客户采样算法的优势,而不是统一采样和现有的基于在线学习的采样策略。所提出的自适应采样程序适用于此处研究的FL概率,可用于改善随机优化程序的性能,例如随机梯度下降和随机坐标下降。
人工智能 (AI) 已成为项目管理中的一股强大力量,它改变了传统做法并扩展了人类的能力。本研究探讨了 (AI) 人工智能在项目管理中发挥的各种作用,并评估了其对项目成功率的影响。通过对写作和实际数据研究的广泛调查,本研究发现,人工智能在项目管理中的应用已导致项目成功率显著提高。总体而言,人工智能实施已使不同行业的项目成功率显著提高约 20%。通过自动化单调的任务、优化资产配置和优化动态周期,人工智能已显示出简化项目工作流程和降低风险的能力。然而,除了其有希望的优势之外,人工智能实施也带来了一些挑战,例如数据安全问题、道德问题和劳动力再培训要求。这概括了在项目管理中采用人工智能技术以实现更高效率、充分性和增长的基本意义。展望未来,预计需要进一步研究以调查新兴模式并解决在控制人工智能以实现项目成功方面日益严峻的挑战。
摘要:本研究提出了一种基于深度强化学习 (DRL) 的车辆到电网 (V2G) 运营策略,该策略侧重于动态整合充电站 (CS) 状态以优化太阳能发电 (SPG) 预测。为了解决太阳能和 CS 状态的变化,本研究提出了一种新方法,将 V2G 运营制定为马尔可夫决策过程,并利用 DRL 自适应地管理 SPG 预测误差。利用韩国南方电力公司的实际数据,使用 PyTorch 框架证明了该策略在增强 SPG 预测方面的有效性。结果表明,与没有 V2G 的情景相比,均方误差显著降低了 40% 至 56%。我们对阻塞概率阈值和折扣因子影响的研究揭示了最佳 V2G 系统性能的见解,表明在即时运营需求和长期战略目标之间取得平衡。研究结果强调了使用基于 DRL 的策略实现电网更可靠、更高效的可再生能源整合的可能性,标志着智能电网优化向前迈出了重要一步。
摘要。已使用“零交叉”测量方法在混合物中同时定量奎宁 - 腺嘌呤或奎宁 - 甲基丙二酰胺盐酸盐的同时定量。在有4.3 µg/ml腺嘌呤的存在下,奎宁和腺嘌呤的第一衍生光谱允许在9.0 µg/ml quinine的情况下测定奎宁(1.5–17.9 µg/ml)。在二元二元 - 氯丙胺盐酸盐的二元混合物中,喹氨酸和甲基丙二酰胺盐酸盐的第一个衍生光谱允许在5.4 µG/ml甲基甲基盐水中测定奎宁(11.95–95.62 µg/ml),并在5.4 µg/ml的米尔酯中测定(1.34–21.52 µg/ml),存在29.88 µg/ml的奎宁。对所提供的实际数据进行了统计审查,以对推荐方法进行批判性评估。关键词:奎宁,腺嘌呤,甲氧氯普胺盐酸盐,二元混合物,同时测定,衍生分光光度法
摘要:在数据驱动的系统中,数据探索对于做出实时决策至关重要。但是,大数据存储在很难检索的大量数据库中。近似查询处理(AQP)是一种基于数据摘要(摘要)的汇总查询的近似答案的技术,该数据密切复制了实际数据的行为;当对查询的大概答案在实际执行时间的一小部分中可以接受时,这可能很有用。本研究探讨了生成对抗网络(GAN)的新利用,用于生成可以在AQP中用于概要构建中的表格数据。我们彻底研究了概要构建过程带来的独特挑战,包括维持数据分配特征,处理有限的连续和分类数据以及保持语义关系,然后我们介绍了克服这些挑战的表格GAN结构的进步。此外,我们提出并验证一套用于评估GAN生成概要的可靠性的统计指标。我们的发现表明,先进的GAN变化具有产生高保真概述的有前途的能力,有可能改变AQP在数据驱动系统中的效率和有效性。
定性数据的可信赖性是有争议的,但它得到了支持者的强烈支持。但是,定性数据的重要性和价值不会受到破坏。本文对定性数据的可信度进行了批判性审查。可以通过确保可信度,可转移性,可靠性和研究设计,过程和行动的可信度,可转让性,可靠性和可比性来衡量定性研究的信任程度。由于其主观性质,定性研究中可信度的保证比定量研究中更为复杂。许多研究人员和专家否认定性研究的普遍性。但是,很少有Guba(1985)的研究人员开发了一种广泛接受的模型和策略,以确保定性研究的可信度和普遍性。可信度就像定量分析中的内部有效性,并提供了有关该现象的实际数据。可转移性显示了研究发现在其他确切的上下文,人,群体和环境中的应用程度。如果一项研究的发现在相似的人群,状况或环境中复制,则发现可靠。中立性是结果的公平程度,包括初始响应和无偏见的纯度。关键词:信誉;可靠;中立可转让性;值得信赖; GUBA模型
摘要 - 机器人增强学习(RL)的实际数据的高成本导致模拟器的广泛使用。尽管在建立更好的动态模型方面为模拟器与现实世界匹配,但在模拟与现实世界之间存在另一个经常被忽视的不匹配,即可用培训任务的分布。现有的课程学习技术进一步加剧了这种不匹配,从而在不考虑其与现实世界的相关性的情况下自动改变了模拟任务分布。考虑到这些挑战,我们认为机器人的课程学习需要基于现实世界的任务分布。为此,我们提出了扎根的课程学习(GCL),该课程将课程中的模拟任务分布与现实世界保持一致,并明确考虑了对机器人的任务以及机器人过去的执行方式。我们使用谷仓数据集在复杂的导航任务上验证GCL,与州专家设计的状态CL方法和一项课程相比,成功率高6.8%和6.5%。这些结果表明,GCL可以通过接地自适应课程中现实世界中的模拟任务分布来提高学习效率和导航性能。
高密度电生理探针为人类和非人类动物中的系统神经科学4开辟了新的可能性,但是记录记录时探针运动(或漂移)对下游分析提出了挑战5,尤其是在人类记录中。在这里,我们以四个主要贡献的算法称为Dredge(7 E Egistredy的7 e egistration d ata d ata)的算法(d ectreghized r egistration)的算法进行了改进。首先,除了从动作电位(AP)检测到的9个尖峰外,我们还将以前的分散8种方法扩展到利用本地场电位(LFP)的多频道信息(LFP)。第二,我们表明基于LFP的方法10可以在子秒时间分辨率下进行注册。第三,我们引入了有效的在线11运动跟踪算法,允许该方法扩展到更长和更高的空间分辨率12录音,这可以促进实时应用程序。最后,我们通过考虑实际数据中发生的非组织性并自动化14个参数选择来提高13方法的鲁棒性。共同实现了来自人类和小鼠的15个具有挑战性的数据集的完全自动化的可扩展注册。16