介绍了一种将光伏、风能和水力发电能源与超级电容器和锂离子电池组成的混合储能系统相结合的功率平滑方法(斜坡率和移动平均值)。然后,通过研究混合可再生能源与电网之间的能量流,分析了工业负载的自耗。本文的主要新颖之处在于超级电容器的可操作性。实验结果表明,当应用功率平滑斜坡率方法时,超级电容器的运行周期数少于移动平均法。通过改变可再生能源的容量可以保持这一结果。此外,通过增加光伏和风能可再生能源的容量,混合储能系统只需要更大的超级电容器容量,而通过增加水力涡轮机的容量,电池需求量会大大增加。最后,通过增加水力涡轮机和电池的容量,能源成本和自耗达到最大值。
我们提供十二种最佳实践,并讨论每种实践如何帮助研究人员准确,可信,并在道德上使用生成的AI(Genai)来增强实验研究。我们将十二种做法分为四个领域。首先,在预处理阶段,我们讨论了Genai如何帮助进行预注册程序,数据隐私问题和特定于Genai使用的道德考虑。第二,在设计和实施阶段,我们专注于Genai在确定新的变化,试点和文档以及维护四个排除限制方面的作用。第三,在分析阶段,我们探讨了提示和训练集偏见如何影响结果以及必要的步骤以确保可复制性。最后,我们讨论了随着Genai的发展,可能会变得重要性的前瞻性最佳实践。
垂直堆叠的三维集成电路 (3D IC) 中的芯片间电通信由芯片间微凸块实现。微凸块的电迁移可靠性对于了解基于 3D IC 的微电子系统的可靠性至关重要。本文报告了通过热压键合在两个芯片之间形成的 Cu-Sn-Cu 微凸块的电迁移可靠性的实验研究。双芯片 3D IC 组装在线键合陶瓷封装中,并在不同温度下的空气和氮气环境中进行电迁移测试。测量了微连接链和开尔文结构的故障寿命和平均故障时间 (MTTF)。结果表明,Cu-Sn 微连接的本征活化能介于 0.87 eV 和 1.02 eV 之间。基于故障分析,提出了可能的故障机制。这项研究的结果有望提高人们对 3D IC 中电迁移可靠性的根本理解,并促进基于 3D IC 的稳健可靠的微电子系统的开发。2014 Elsevier BV 保留所有权利。
与轴突渗透性相关的参数 - 轴内水交换时间(𝜏I)可能是理解和治疗脱髓鞘病理(例如多发性硬化症)的重要生物标志物。di usion加权MRI(DW-MRI)对渗透性的变化敏感;但是,由于缺乏合并其的一般生物物理模型,因此该参数仍然难以捉摸。基于机器学习的计算模型可以可能用于估计此类参数。最近,第一次使用随机森林(RF)回归器的理论框架表明,这是一种有希望的渗透性估计方法。在这项研究中,我们采用了一种方法,并且在第一次实验中,通过与组织学直接进行比较,对其进行了实验研究,以脱髓鞘。
摘要 - 本文介绍了基于经济标准的PV阵列和风力涡轮机发生的大型和小规模压缩空气存储(CAE)的经济和实验研究。详细介绍了具有三个不同案例研究的两个不同的CAES系统。第一个型号包括涡轮,压缩机和存储储层量的风力涡轮机,压缩机和存储库,分别为220 MW,200 MW和150,000 M3。一个小的CAES功率系统由Bergey Excel-S 10 kW的5 kW隔离载荷组成,以调查提出的模型的有效性,以研究另一种应用。第二个介绍的模型基于PV面板提供的实际原型测试和实验室测量。一个原型模型的构建较小,以指示系统特性及其主要有效参数。此外,基于提议的原型系统的基础知识将对孤立的埃及村庄(halayeb)进行的案例研究作为第三个案例研究。结果证明了CAES系统提供网格隔离村庄的家庭负载的能力。最后,该论文对提出的系统进行了经济分析。
引入3D打印已彻底改变了不同复杂晶格结构的设计和制造,从而提供了前所未有的灵活性,以优化各种应用的机械性能。但是,传统的3D打印晶格结构通常会在实现强度,刚度和体重之间达到所需的平衡时面临一些局限性。这项研究通过创新的设计修改对常规3D打印晶格结构的增强进行了全面研究。通过将高级计算技术(例如有限元方法(FEM)建模与实验研究)整合在一起,本研究旨在评估这些增强结构的机械性能。FEM分析允许精确预测压力分布和压缩负载条件下的变形,而实验验证则提供了对现实世界中适用性和性能的见解。结果表明,体重不是影响机械规格的主要因素,这是该研究通过获得的结果的主要假设,这表明与SC-FCC相比,在修改的模型中,将重量降低了12%,与SC-FCC相比,修改的模型比SC-BCC的重量比SC 11.7 G的重量更轻,并且与SC-BCC结构相比,重量为10.32 G较轻。这些发现揭示了机械性能的显着改善,包括增加负载能力,证明了这些增强的晶格结构对高级工程应用的潜力。这项研究不仅有助于理解3D打印的晶格的机械行为,而且还为开发更有效,更健壮的结构组件铺平了道路。
本文介绍了一种利用烟囱废气加热水的热回收系统 (HRS)。本文通过实验手段对 Khaled 等人提出的一种名为“多管罐”的废热回收系统进行了优化。文中详细描述了该系统的设计,并进行了组装和测试。为了研究改变头部形状对系统性能的影响,本文构建了两个不同的头部:一个圆柱形 (Cyl) 和一个锥形 (Con)。结果表明,锥形头部 (ConH) 的性能优于圆柱形头部 (CylH)。具体来说,在 275 分钟内,CylH 系统可将水温升高到最高 59 ◦ C,而 ConH 系统可将水温升高到 68 ◦ C。此外,在 400 分钟内,ConH 系统可将水温升高到 80 ◦ C。此外,经济和环境分析表明,当系统每月使用 140 次,每次 275 分钟时,ConH 系统可比 CylH 系统每月节省约 16 美元。此外,ConH 系统的投资回收期约为 CylH 系统的一半(6 个月)。最后,当系统每月使用 140 次时,ConH 系统可比 CylH 系统每年减少 2 吨二氧化碳排放。
研究是一种有意识的人类努力,以获取新知识,创造新知识,解决或为科学问题提供解决方案。研究工作必须在逻辑 /理性和系统上进行,以便可以获得新的信息和知识。实验研究是与其他研究相比,在确定因果关系时,唯一更准确/彻底的研究类型。这是因为在实验研究中,研究人员可以在研究前和研究期间监督(对照)自变量。所使用的研究类型是定性研究,文献研究。本文讨论了实验研究的含义,实验研究的目标,实验研究中的变量,实验研究的特征,各种类型的实验研究设计和实验研究步骤。
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
符合可持续发展目标的能源转型要求在大多数能源需求领域迅速采用可再生能源 [1,2] 。热能存储 (TES) 具有在发电、工业和建筑等不同领域实现可再生能源高份额的巨大潜力 [3,4] 。TES 的优势特性包括可变的存储容量和持续时间、灵活的供需脱钩、灵活的集成方式 [5] 和生命周期优势,引起了各个能源市场的特别关注。根据 IRENA 的符合《巴黎协定》的能源转型情景 [6] ,预计未来 10 年安装的 TES 容量将增加三倍,从 2019 年的 234 GWh 增加到 2030 年的至少 800 GWh。