设计酶具有基础和技术意义。实验定向进化仍然有很大的局限性,计算方法是一条补充途径。设计的酶应满足多个标准:稳定性、底物结合、过渡态结合。这种多目标设计在计算上具有挑战性。最近的两项研究使用自适应重要性抽样蒙特卡罗重新设计蛋白质以进行配体结合。通过首先平坦化载脂蛋白的能量景观,他们获得了结合状态的正设计和非结合状态的负设计。我们现在已将该方法扩展到设计一种酶以进行特定的过渡态结合,即其催化能力。我们考虑了甲硫氨酰-tRNA 合成酶 (MetRS),它将甲硫氨酸 (Met) 附着到其同源 tRNA 上,从而建立密码子身份。此前,MetRS 和其他合成酶已通过实验定向进化重新设计,以接受非规范氨基酸作为底物,从而导致遗传密码扩展。在这里,我们通过计算重新设计了 MetRS,使其能够结合多种配体:Met 类似物叠氮亮氨酸、甲硫氨酰腺苷酸 (MetAMP) 以及形成 MetAMP 生成过渡态的活化配体。通过设计计算恢复了已知具有叠氮亮氨酸活性的酶突变体,并对预测结合 MetAMP 的 17 种突变体进行了实验表征,发现它们均具有活性。预测具有低活化自由能的突变体在 MetAMP 生成中被发现具有活性,并且预测的反应速率与实验值非常吻合。我们建议本方法应成为计算酶设计的范例。
抽象的光子加载量滤波器是在光纤通信系统中实现波长多路复用(WDM)的关键组件。光子整合的最新进展表明,在芯片上将光子附加电源过滤器与高性能光子构建块一起集成的潜力,以构建WDM的紧凑型和复杂的光子积分电路。通常,实现基于具有集成加热器或基于自由载体分散调节器的微环谐振器,以调整滤波器波长。然而,加热器遭受高功耗,自由载体会导致光吸收损失,从而限制了向非常大尺度电路的可扩展性。我们演示了基于垂直移动的MEMS式环共振器的紧凑型加载滤器的设计,仿真,制造和实验表征。在IMEC的ISIPP50G硅光子平台中实现了MEMS驱动的加载滤波器,并使用短的后处理流程实现,以在晶圆级兼容的过程中安全释放悬挂的MEMS结构。滤波器在1557.1 nm处表现出约1 nm(124.37 GHz)的端口宽度,并保留了20 dB的端口灭绝,端口隔离率在驱动电压的27 V下> 50 dB。低功率消耗和紧凑的足迹的组合证明了在光子cirit中非常大规模整合的适用性。©作者。由SPIE在创意共享归因4.0国际许可下出版。[doi:10.1117/1.jom.2.4.044001]全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。
使用在低温下运行的先进互补金属氧化物半导体 (CMOS) 技术实现基于量子点的电子自旋量子比特,可以实现大规模自旋量子比特系统的可重复和高通量工业制造。采用纯工业 CMOS 制造技术制造的硅基量子点架构的开发是朝着这个方向迈出的重要一步。本论文研究了意法半导体公司(法国克罗尔)的 28 nm UTBB(超薄体和埋氧化物)全耗尽绝缘体上硅(FD-SOI)技术的潜力,以实现明确定义的量子点,能够实现自旋量子比特系统。在此背景下,在 4.2 K 下对 FD-SOI 微结构进行了霍尔效应测量,以确定量子点应用的技术节点的质量。此外,还介绍了一种针对量子设备实施而优化的集成工艺流程,该工艺流程仅使用硅铸造方法进行大规模生产,重点是降低制造风险和总体交货时间。最后,设计了两种不同几何形状的 28 nm FD-SOI 量子点器件,并研究了它们在 1.4 K 下的性能。作为 Nanoacademic Technologies、Institut quantique 和 STMicroelectronics 合作的一部分,开发了 3D QT-CAD(量子技术计算机辅助设计)模型,用于建模 FD-SOI 量子点器件。因此,除了通过传输测量和库仑阻塞光谱对测试结构进行实验表征之外,还使用 QTCAD 软件对其性能进行建模和分析。这里介绍的结果证明了 FD-SOI 技术相对于其他量子计算应用方法的优势,以及在此背景下 28 nm 节点的已知局限性。该工作为基于较低技术节点的新一代FD-SOI量子点器件的实现铺平了道路。
最近的微生物基因组测序工作揭示了大量含有整合酶的移动遗传元件,这些整合酶可能成为有用的基因组工程工具。大型丝氨酸重组酶 (LSR),例如 Bxb1 和 PhiC31,是噬菌体编码的整合酶,可以促进噬菌体 DNA 插入细菌基因组。然而,之前仅鉴定了少数 LSR,它们在人类细胞中的效率有限。在这里,我们开发了一个系统的计算发现工作流程,通过识别数千个新的 LSR 及其同源 DNA 附着位点。我们通过在人类细胞中对 LSR 进行实验表征来验证这种方法,从而产生了三类根据其效率和特异性彼此区分的 LSR。我们识别了可有效整合到与人类基因组正交的合成安装附着位点的着陆垫 LSR、具有计算可预测伪位点的人类基因组靶向 LSR,以及可以单向整合货物的多靶向 LSR,其效率与常用转座酶相似,特异性更高。每个类别的 LSR 在人类细胞中都进行了功能鉴定,总体而言,其质粒重组率比 Bxb1 高出 7 倍,基因组插入效率为 40-70%,载物大小超过 7 kb。总体而言,我们建立了一个范例,用于大规模发现微生物重组酶并直接从微生物测序数据重建其靶位。该策略提供了丰富的资源,包括 60 多种经过实验鉴定的 LSR,这些 LSR 可以在人类细胞中发挥作用,以及数千种额外的候选 LSR,可用于大负载基因组编辑,而不会暴露 DNA 双链断裂。
• 助理教授(08/B2 结构力学部门非终身研究员初级职位)。研究活动侧重于材料和结构机械行为的建模。参考现有结构,研究对象是基于分布式传感器网络的监控技术,同时利用人工智能方法(神经网络)的最新进展。参考创新材料,研究活动侧重于开发新的数值技术进行设计优化,例如遗传算法和强化学习。从微观到宏观尺度的实验表征和模型验证的创新实验策略完善了活动范围。 • 米兰理工大学博士后研究员。资助:“用于 MEMS 中机械能转换和存储的超材料和超结构”,由米兰理工大学民用和环境工程部颁发,资助编号 198010,日期 2021 年 11 月 17 日,索引号10600。该资助由米兰理工大学和 ST Microelectronics 的 STEAM(先进材料传感器系统)联合研究中心资助。主要课题:强化学习在 MEMS 规模能量收集用分级超材料设计中的应用(2022 年至今)。• 结构和计算力学课程助教。硕士论文联合导师(2018 年至今)。• 与 Eurosilos Sirp srl 合作。主要课题:玻璃增强聚酯外壳的结构设计。研发合同:“GRP 筒仓的分析和优化”。合同负责人:R. Ardito 教授(2023 年)。• 与 Socotec 监测(法国)合作。主要课题:使用实验记录校准烟囱的结构模型的开发(2022 年)。• 米兰理工大学结构、地震和岩土工程博士候选人。主要主题:结合物理和基于数据的方法开发结构健康监测计算方法(2018-2022)。 • 在 Studio di Ingegneria Amigoni、Calolziocorte (LC) 实习。主要主题:监测列奥纳多达芬奇的《最后的晚餐》的结构稳定性,米兰圣玛利亚感恩教堂(2018 年)。海外经历:
终端是位于基因3'末端的特定核苷酸序列,并包含转录终止信息。作为基本的遗传调节元件,终结子在基因回路的设计中起着至关重要的作用。准确表征终结器强度对于提高基因电路设计的精度至关重要。终结器强度的实验表征是耗时的和劳动的;因此,有必要开发能够准确预测终结器强度的计算工具。当前的预测方法未完全考虑与终止者有关的序列或热力学信息,而缺乏可靠的模型来准确预测。同时,深层生成模型在生物序列的设计中表现出巨大的潜力,并有望应用于终结序列设计。本研究的重点是大肠杆菌终结剂的智能设计,主要进行以下研究:(1)为大肠杆菌构建固有的终结器强度预测模型,这项研究提取了大肠杆菌固有末端的序列特征和热力学特征。基于选定功能的机器学习模型实现了R 2 = 0.72的预测性能。(2)本研究采用生成对抗网络(GAN)来从内在的终结器序列训练数据中学习并生成终结器序列。评估表明,生成的终结器表现出与内在终结器相似的数据分布,这证明了Gan生成的终止序列的可靠性。(3)本研究使用构造的终结器强度预测模型从生成的集合中筛选出强终端。实验验证表明,在18个选定的终结者中,有72%的终止效率大于90%,证实了大肠杆菌终结者的智能设计方法的可靠性。总的来说,这项研究构建了大肠杆菌的终结器强度预测模型和终结器生成模型,为基因电路中的终结器设计提供了模型支持。这增强了生物成分设计的模块化,并促进了合成生物学的发展。
摘要:单片高对比度光栅 (MHCG) 由单片层中图案化的一维光栅组成,可提供高达 100% 的光功率反射率,并且可以在现代光电子学中使用的几乎任何半导体和介电材料中制造。MHCG 可实现单片集成、偏振选择性和多功能相位调谐。它们可以比分布式布拉格反射器薄 10 到 20 倍。MHCG 的亚波长尺寸大大降低了确保 MHCG 条纹侧壁光滑度的可能性,并使在蚀刻过程中精确控制 MHCG 条纹横截面的形状变得困难。问题在于,改进蚀刻方法以获得设计所假设的完美横截面形状是否更有利,或者是否有可能使用给定蚀刻方法提供的形状找到能够实现高光功率反射的几何参数。在这里,我们进行了一项数值研究,该研究由使用多种常见的表面纳米级成型方法在不同材料中制造的 MHCG 的实验表征支持。我们证明具有任意横截面形状的 MHCG 条纹都可以提供接近 100% 的光功率反射率,这大大放宽了它们的制造要求。此外,我们表明,对于准梯形横截面的 MHCG,可以实现超过 99% 的光功率反射率和超过 20% 的创纪录光谱带宽。我们还表明,如果波纹幅度小于 MHCG 周期的 16%,MHCG 条纹的侧壁波纹对 MHCG 光功率反射的影响很小。使用最新的表面蚀刻方法可以实现这种条纹制造精度。我们的研究结果对于设计和生产采用 MHCG 的各种光子器件具有重要意义。横截面形状的灵活性有利于可靠地制造高反射率亚波长光栅镜。这反过来又将使制造单片集成的高品质因数光学微纳腔器件成为可能。关键词:单片高对比度光栅、亚波长光栅、光功率反射
摘要:我们报告了异构性纯和原始C 120耗油管的第一个实验表征,[5,5] C 120 -D 5D(1)和[10,0] C 120 -D 5H(10766)。这些新分子代表迄今为止分离的最高纵横比所有分子,例如,先前最大的空笼子富勒特管为[5,5] C 100 -D 5D(1)。与C 60 -C 90富勒烯研究的三十年相比,20个碳原子的增加代表了巨大的飞跃。此外,[10,0] C 120 -D 5H(10766)FullerTube具有源自C 80 -D 5H的端盖,是一种新的FullerTube,其C 40端率尚未通过实验隔离。对各向异性极化性和UV -VIS的理论和实验分析将C 120异构体I分配为[5,5] C 120 -D 5D(1)富勒图管。C 120异构体II匹配A [10,0] C 120 -D 5H(10766)FullerTube。这些结构分配得到了拉曼数据的进一步支持,显示了[5,5] C 120 -D 5D(1)的金属特征和C 120 -D 5H(10766)的非金属特征。STM成像揭示了一个管状结构,其纵横比与[5,5] C 120 -D 5D(1)富集管一致。具有不适合晶体学的微克量,我们证明了DFT各向异性极化性,可通过长期接受的实验分析(HPLC保留时间,UV-VIS,Raman和STM)增强,可以协同使用(带有DFT)(带有DFT)来降低选择,预测,预测,预测,分配C 120 FullerTube cantube untertube cantube untertube结构。从数学上可能的IPR C 120结构中,这种各向异性极化范式非常有利地将管状结构与碳烟灰区分开。识别异构体I和II是令人惊讶的,即,2个纯化的异构体,用于两个广泛区分特征的可能结构。这些金属和非金属C 120富勒伯异构体为基础研究和应用开发打开了大门。
气溶胶喷射打印 (AJP) 是一种直接写入增材制造技术,已成为制造各种电子设备的高分辨率方法。尽管 AJP 在印刷电子行业中具有优势和关键应用,但 AJP 工艺本质上不稳定、复杂,并且容易出现意外的逐渐漂移,这会对印刷电子设备的形态产生不利影响,从而影响其功能性能。因此,对 AJP 进行现场过程监控和控制是不可避免的需求。在这方面,除了对 AJP 过程进行实验表征外,还需要物理模型来解释 AJP 中潜在的空气动力学现象。这项研究工作的目标是建立一个基于物理的计算平台,用于预测气溶胶流动状态,并最终实现对 AJP 过程的物理驱动控制。为了实现这一目标,我们的目标是提出一个三维 (3D) 可压缩、湍流、多相计算流体动力学 (CFD) 模型,以研究 AJP 过程中 (i) 气溶胶生成、(ii) 气溶胶输送和 (iii) 气溶胶在移动自由表面上沉积背后的空气动力学。沉积头以及气动雾化器的复杂几何形状是在 ANSYS - FLUENT 环境中建模的,基于专利设计以及从 3D X 射线微型计算机断层扫描 (l-CT) 成像获得的精确测量。随后使用光滑和软四边形元素的混合对构建的几何形状的整个体积进行网格划分,同时考虑膨胀层以获得靠近壁面的精确解决方案。采用基于密度和压力的 Navier-Stokes 形成的组合方法来获得稳态解,并将守恒不平衡控制在指定的线性化公差以下(即 10 6 )。使用具有可扩展壁面函数的可实现 k-e 粘性模型对湍流进行建模。此外,还建立了耦合的两相流模型来跟踪大量注入的粒子。CFD 模型的边界条件是根据从 AJP 控制系统记录的实验传感器数据定义的。使用因子实验验证了模型的准确性,该实验包括在聚酰亚胺基底上 AJ 沉积银纳米粒子墨水。本研究的结果为实施物理驱动的 AJP 现场监测和控制铺平了道路。[DOI:10.1115/1.4049958]
2024 年 11 月 12 日 回复:麦吉尔大学 2025 年秋季博士职位空缺 亲爱的同事们, 麦吉尔大学高级多功能和多物理超材料实验室(生物资源工程系)2025 年秋季有一个博士职位空缺。研究课题是可重构机械超材料领域。理论和计算多尺度建模以及 3D 打印和实验表征将用于多物理多尺度设计、分析和制造合理设计的结构多功能材料。候选人将在麦吉尔大学 Hamid Akbarzadeh 教授的指导下工作。该职位所需的资格是:(1)非线性屈曲分析、高级材料力学、计算多尺度非线性力学、结构超材料和多物理模拟和表征方面的深厚背景。 (2)最好具有可重构超材料、变形材料、机器学习和功能材料 3D 打印方面的经验。 (3) 必须精通非线性有限元分析,并熟练使用 ANSYS/ABAQUS 或 COMSOL 等商业有限元软件包。 (4) 熟练使用 MATLAB 和/或 Python/C 进行编程。 (5) 麦吉尔大学入学要求:英语熟练,本科和研究生 GPA 高(硕士和学士学位 GPA>3.5 分(满分 4.0 分))。 (6) 在知名期刊上发表过良好文章。 感兴趣的候选人应将求职信(强调他们在上述主题上的经验,特别是在超材料领域的经验)、简历和两篇代表性出版物(如果有)发送给 Hamid Akbarzadeh 教授(hamid.akbarzadeh@mcgill.ca)。我们强烈鼓励女性、残疾人、土著人民和少数族裔成员申请。入围候选人可能会被要求提供更多信息,并建议他们在 2025 年 1 月 15 日之前向麦吉尔大学提交完整的申请。 此致, Hamid Akbarzadeh,博士,PEng,CRC 加拿大多功能超材料研究主席 生物资源工程系副教授 机械工程系副会员 麦吉尔先进材料研究所 (MIAM) 成员 麦吉尔航空工程研究所 (MIAE) 成员 麦吉尔可持续发展系统倡议 (MSSI) 成员 麦吉尔大学,加拿大魁北克省蒙特利尔 电话:+ 1 (514) 398 7680,电子邮件:hamid.akbarzadeh@mcgill.ca