超导电子设备的发展需要仔细表征化妆电子电路的组件。超导弱环节是大多数超导电子组件的构建块,其特征是高度非线性的电流到相位关系(CPRS),通常不完全知道。最近的研究发现,约瑟夫森二极管效应(JDE)可能与嵌入超导干涉仪中的弱环节的弱环节的高谐波含量有关。这使JDE成为探索单谐波CPR以外的弱环节的谐波内容的天然工具。在这项研究中,我们介绍了双环超导量子干扰装置(DL-squid)的理论模型和实验特征,该设备嵌入了全金属超导型金属 - 金属 - 超导 - 超导体连接。由于三个弱连接的超电流的干扰,该设备在并联的三个弱环上的干扰而表现出JDE,并且可以通过两个磁通量调节该功能,这些磁通量充当实验旋钮。我们根据干涉仪臂的相对重量以及有关通量可调性和温度的实验表征进行了对设备的理论研究。
图 4:体育场 QD 电位剖面示意图和相关模拟。(a)上图:MLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的 MLG 带和电荷中性点(𝐸 456)。下图:体育场 MLG QD 的示意图。(b)上图:BLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的带隙和三角扭曲的 BLG 带和𝐸 456。下图:体育场 BLG QD 的示意图。(c、d)对 (c) MLG 和 (d) BLG 体育场 QD 的电子局域态密度的数值紧束缚模拟。d𝐼/d𝑉。对角条纹在 (d)(具有间隙屏障壁)中可见,但在 (c)(具有无间隙壁)中不可见。 BLG 体育场的 TB 模型包括 𝛾 8 跳跃和空间均匀的 60 meV 间隙。这些参数的灵感来自我们之前对圆形 BLG QD 的实验表征 [9],(另见 SI 第 6 节)。在 BLG 体育场 𝑑𝐼/𝑑𝑉 ? 图模拟中,仅考虑了子晶格 𝐴 > 的 LDOS 贡献。
摘要 中微子振荡是基本粒子物理中的一个重要物理现象,它的非经典特性可以用Leggett–Garg不等式来揭示,表明它的量子相干性可以在天体物理长度尺度上维持。在本文中,我们通过量子相干性的非局域优势(NAQC)、量子导引和Bell非局域性来研究实验观测到的中微子振荡的量子性度量。从不同的中微子源,分析了不同能量的反应堆和加速器中微子集合,例如大亚湾(0.5 km和1.6 km)和MINOS(735 km)合作。与理论预测相比,用实验表征了两味中微子振荡的NAQC。它随着能量的增加表现出非单调的演化现象。此外,研究发现,NAQC 的量子关联性比量子操纵和贝尔非局域性更强,甚至达到公里量级。因此,对于实现 NAQC 的任意二分中微子味态,它也必须是一个可操纵的贝尔非局域态。该结果可能为中微子振荡在量子信息处理中的进一步应用提供新的见解。
摘要 中微子振荡是基本粒子物理中的一个重要物理现象,它的非经典特性可以用Leggett–Garg不等式来揭示,表明它的量子相干性可以在天体物理长度尺度上维持。在本文中,我们通过量子相干性的非局域优势(NAQC)、量子导引和Bell非局域性来研究实验观测到的中微子振荡的量子性度量。从不同的中微子源,分析了不同能量的反应堆和加速器中微子集合,例如大亚湾(0.5 km和1.6 km)和MINOS(735 km)合作。与理论预测相比,用实验表征了两味中微子振荡的NAQC。它随着能量的增加表现出非单调的演化现象。此外,研究发现,NAQC 的量子关联性比量子操纵和贝尔非局域性更强,甚至达到公里量级。因此,对于实现 NAQC 的任意二分中微子味态,它也必须是一个可操纵的贝尔非局域态。该结果可能为中微子振荡在量子信息处理中的进一步应用提供新的见解。
肠道菌群释放的发酵产品为宿主提供了能量和重要的调节功能。 然而,关于微生物群和人类宿主之间的代谢物交换的定量信息很少,因此发酵产物的有效剂量。 在这里,我们引入了一个综合框架,将主要肠道细菌的实验表征与人类消化生理学的定量分析相结合,以对这种交换及其对饮食和微生物群组成的依赖进行数字。 从加油菌群生长的复杂碳水化合物中,我们发现大多数碳最终都以宿主大量利用的发酵产品结束。 混合发酵产品的这种收获随饮食的差异很大,从美国人口内的100-700 mmol介于饮食之间,到坦桑尼亚的Hadza人的1300人。 因此,发酵产品覆盖了人类宿主每日能量需求的2%至12%,大大低于实验室小鼠估计的21±4%。 相比之下,微生物群的组成对每日的总收获几乎没有影响,但决定了特定发酵产物的收获。 丁酸酯以促进上皮健康而闻名,显示出最大的变化。 因此,我们的框架确定并量化了驱动代谢相互作用的主要因素,并在微生物群和宿主之间进行信息交换,这对于机械学上至关重要的是剖析微生物群在健康和疾病中的作用。肠道菌群释放的发酵产品为宿主提供了能量和重要的调节功能。然而,关于微生物群和人类宿主之间的代谢物交换的定量信息很少,因此发酵产物的有效剂量。在这里,我们引入了一个综合框架,将主要肠道细菌的实验表征与人类消化生理学的定量分析相结合,以对这种交换及其对饮食和微生物群组成的依赖进行数字。从加油菌群生长的复杂碳水化合物中,我们发现大多数碳最终都以宿主大量利用的发酵产品结束。混合发酵产品的这种收获随饮食的差异很大,从美国人口内的100-700 mmol介于饮食之间,到坦桑尼亚的Hadza人的1300人。因此,发酵产品覆盖了人类宿主每日能量需求的2%至12%,大大低于实验室小鼠估计的21±4%。相比之下,微生物群的组成对每日的总收获几乎没有影响,但决定了特定发酵产物的收获。丁酸酯以促进上皮健康而闻名,显示出最大的变化。因此,我们的框架确定并量化了驱动代谢相互作用的主要因素,并在微生物群和宿主之间进行信息交换,这对于机械学上至关重要的是剖析微生物群在健康和疾病中的作用。
大型丝氨酸重组酶 (LSR) 是一种 DNA 整合酶,可促进移动遗传元件在细菌基因组中的位点特异性整合。迄今为止,只有少数 LSR(如 Bxb1 和 PhiC31)被鉴定,作为人类细胞中 DNA 整合的工具,其效率有限。在这项研究中,我们开发了一种计算方法来识别数千个 LSR 及其 DNA 附着位点,将已知的 LSR 多样性扩大了 100 倍以上,并能够预测它们的插入位点特异性。我们在人类细胞中测试了它们的重组活性,将它们归类为着陆垫、基因组靶向或多靶向 LSR。总体而言,我们实现了比 Bxb1 高出七倍的重组率,基因组整合效率为 40-75%,货物大小超过 7 kb。我们还展示了无病毒的质粒或扩增子文库的直接整合,以改进功能基因组学应用。这种直接从微生物测序数据中系统地发现重组酶的做法,提供了超过 60 种在人体细胞中经过实验表征的 LSR 资源,可用于大负载基因组插入,且不会暴露 DNA 双链断裂。
基于环氧的成型化合物(EMC)被广泛用于封装汽车电子产品。在高温运行下,EMC被氧化并在机械性能中经历降解。这可以改变封装的电子组件的热机械行为,从而影响其可靠性。Three key aspects of EMC oxidation in the context of microelectronics reliability are pre- sented in this paper – (1) degradation of EMC specimens is studied under high temperature aging at three different temperatures – 170 ° C, 200 ° C, and 230 ° C for up to 1500 hours and the oxidation growth is documented as a function of aging duration and temperature using a fluorescence microscope; (2)使用全氧化标本对氧化EMC(Viz。,弹性模量,热膨胀系系和玻璃过渡温度)的批判性热机械性能进行了实验表征; (3)通过将热老化套件的变形与在治疗周期下的原始包装的变形进行比较,研究了EMC氧化对电子包装的热机械行为的影响。这项研究表明,EMC在暴露于高温的早期(≈24小时)中迅速氧化,氧化层表现出明显不同的热力学特性。因此,热老化发展了较硬的包装行为,这对于准确的可靠性评估至关重要。
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
冷喷雾剂(CS)颗粒沉积,也称为冷喷雾添加剂制造,为聚合物底物上的高通量功能金属化提供了机会。然而,由于需要专用且成本密集的实验表征工具,对基于CS的聚合物金属化和量化沉积概率进行了建模。这强调了对预测方法(例如数值建模)的关键需求。为此,目前的工作旨在通过使用三个网络聚合物模型(TNM)来通过数值建模来解决这一关键差距,以在给定的CS过程设置下预测沉积概率的方式。在这方面,对具有不同密度和直径变化的硬颗粒和软颗粒的CS进行了建模,然后进行实验验证。值得注意的是,代表粒子动能的比例的维数(η)是一种预测工具,以估计聚合物底物的CS金属化概率。此外,扩展了建模努力以在CS过程的η数量和面积覆盖率之间建立相关性。发现有效CS聚合物金属化应高于0.8。受控的实验证实了数值建模是针对聚合物CS金属化的高保真预测方法的可行性和可靠性,从而最大程度地减少了对成本密集的试验和纠正效果的需求。
本研究回顾了异质材料最先进的代表性体积元 (RVE) 生成技术。为此,我们提出了一种系统分类,考虑了各种工程感兴趣的异质材料。在这里,我们将异质固体分为多孔和非多孔介质,其中 0 < 空隙体积分数 < 1 和空隙体积分数 = 0。根据各种形态特征实现进一步细分。相应的生成方法分为三类:(i)通过微观结构的实验表征进行重建的实验方法,(ii)基于物理的方法,旨在模拟负责微观结构形成和演变的物理过程,以及(iii)仅专注于模仿形态的几何方法(忽略微观结构形成过程的物理基础)。这些包括各种数学工具,例如数字图像相关、镶嵌、随机场生成和微分方程求解器。为了完整起见,总结了在 RVE 生成的各个阶段使用的相关最新软件工具(商业或开源)。根据所考虑的方法的效率和对微结构的几何和拓扑特性的预测性能对其进行了审查。� 2018 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。