摘要 在材料科学中,可控和不可控描述符均可用于表征材料。可控描述符的例子包括元素组成和制造过程;相反,不可控描述符由表征特定样品的实验数据生成,例如原始光谱数据或比重。在本研究中,我们考虑一种实验设计来获得一个高精度预测模型,其中材料的不可控描述符是特征,其材料属性是标签。一般而言,由于不可控描述符与材料属性更密切相关,因此基于它们的预测将更准确。本研究中实验设计的目标不是改善材料属性本身,而是预测其属性。为了实现这种设计,我们选择合适的可控描述符来合成候选材料,当相应的不可控描述符和材料属性添加到训练数据中时,预测精度会提高。我们提出了两种实验设计方法,一种基于贝叶斯优化,另一种基于不确定性抽样。使用记录了可控和不可控描述符以及机械性能的聚合物数据库,我们确认我们的方法可以选择合适的候选材料来训练一个高精度预测模型,其中材料性能由不可控描述符预测。我们提出的方法可以应用于材料开发,其中不可控描述符比获得目标材料性能更容易通过实验获得;它也将有助于提取材料结构和性能之间的关系。
N :总预算规模 K :聚类组数 nk :分配给组 k 的总预算规模,PK k =1 nk = NS ( n 1 , · · · , n K , ξ ) :最终样本集 α :S ( n 1 , · · · , n K , ξ ) 中良好解决方案的比例,α = r/NN s :阶段后的总分配预算规模 sns,k :阶段 s 后组 k 的总分配预算规模 ˆ µ k , ˆ σ 2 k :组 k 中 y ( · ) 的样本均值和样本方差 ˆ b :当前最佳组 ˆ τ :估计阈值
图 21 翼尖有垂直尾翼时升阻比与偏航角及 AOA 相互作用。 57 图 22 垂直尾翼位于机翼侧面时偏航角和 AOA 对升阻比的相互作用......................................................................................................................... 58 图 23 垂直尾翼位于翼尖时 AOA 和偏航角对 CYM 影响的 3D 绘图......................................................................................................................... 58 图 24 垂直尾翼位于机翼侧面时 CYM 的 AOA 和偏航角 3D 绘图......................................................................................................................... 59 图 25 推进分析中电流和 AOA CD 影响的 3D 绘图..................................................................................................................... 5 ........................ 61 图 26 未使用推进系统时 A O A 对 CL 的影响 .............................................................. 61 图 27 带推进系统且电流 = 10 AMPS 时 A O A 对 CL 的影响 ................................................................................................................ 62 图 28 未使用推进系统时左侧控制面偏转对 C RM 的影响 ................................................................................................................................ 63 图 29 带推进系统且电流 = 10 AMPS 时左侧控制面偏转对 C RM 的影响 ................................................................................................................
研究:compe(各种社区的需求(ES导致了基于CMIP先前阶段的多样化和集成的气候模型实验集,但包括第一阶段(Me Ini(Me Inizized DeCadal Predic(ONS和新的“地球系统模型”)。
2.2 筛选实验 196 2.2.1 因子的初步排序 196 2.2.2 主动筛选实验 - 随机平衡法 203 2.2.3 主动筛选实验 Plackett-Burman 设计 225 2.2.3 完全随机区组设计 227 2.2.4 拉丁方 238 2.2.5 希腊-拉丁方 247 2.2.6 约登斯方 252 2.3 基础实验 - 数学建模 262 2.3.1 完全因子实验和部分因子实验 267 2.3.2 二阶可旋转设计(Box-Wilson 设计) 323 2.3.3 正交二阶设计(Box-Benken 设计) 349 2.3.4 D 最优性,B k -设计和Hartleys二阶设计 363 2.3.5 得到二阶模型后的结论 366 2.4 统计分析 367 2.4.1 实验误差的确定 367 2.4.2 回归系数的显著性 374 2.4.3 回归模型的拟合度不高 377 2.5 研究对象的实验优化 385 2.5.1 优化问题 385 2.5.2 梯度优化方法 386 2.5.3 非梯度优化方法 414 2.5.4 单纯形和可旋转设计 431 2.6 响应曲面的典型分析 438 2.7 复杂优化示例 443