veeam®是数据保护和勒索软件恢复领域排名第一的全球市场领导者,它的使命是使每个组织能够从数据中断或损失中反弹,而是向前反弹。使用Veeam,组织通过数据安全性,数据恢复和混合云的数据自由来实现根本的弹性。Veeam数据平台为云,虚拟,物理,SaaS和Kubernetes环境提供了一个解决方案,使其和安全领导者放心,他们的应用程序和数据受到保护并始终可用。总部位于华盛顿的西雅图,在30多个国家 /地区设有办事处,可保护全球550,000多个客户,其中包括2000年全球2000年的68%,他们相信Veeam可以保持其业务运行。根本的弹性始于Veeam。在www.veeam.com上了解更多信息,或在LinkedIn @veeam-software和x @veeam上关注Veeam。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年9月18日发布。 https://doi.org/10.1101/2023.07.23.550022 doi:Biorxiv Preprint
关键字:神经普通微分方程,Wasserstein生成的广告网络,序列到序列网络本报告调查了神经通用差分方程(NODE)在机器学习中的应用,重点介绍其在Wasserstein生成的对抗性网络(WGANS)(WGANS)(WGANS)和序列到序列到序列到序列 - 序列到序列(seq2seqsssssssssssssss)的集成。我们探索了解决ODE的各种方法,并在计算效率和准确性方面进行了比较。我们的研究采用了JAX框架和差异方程求解器库的Diffrax来实施和评估这些方法。我们使用FréchetInception距离(FID)度量和SEQ2SEQ模型使用BLEU分数对WGAN进行基准测试。我们的分析涵盖了不同的伴随,自适应公差,网络体系结构中的求解器位置以及标准化技术的影响。对于WGAN,我们发现求解器的选择及其实现并没有显着影响FID得分,但确实会影响计算时间。在SEQ2SEQ模型中,我们观察到,增加网络的宽度会始终提高BLEU分数,并且选择伴随方法和适应性公差可以显着影响性能和效率。我们的结果表明,ODE求解器和相关参数的最佳选择取决于特定的机器学习任务以及准确性和计算效率之间所需的权衡。这项研究通过为不同的应用程序和计算约束来优化这些模型,从而为基于节点的机器学习的不断增长贡献。
洪水事件的发生和世界上的频率对世界的居民特别是联合国(联合国)引起了极大的担忧,因为它影响了一个国家经济的稳定以及民众的安全。洪水在近几十年来对人们的生活和财产造成了严重破坏,在这方面,未来并不明亮,因为事件表明现象正在增加。迅速逃离洪水屠杀取决于预见到洪水的预警和咨询系统。能够准确预测和传播有关洪水发生和严重性的建议的能力,可以帮助减轻其影响。传统的洪水预测和警告系统有局限性,包括数据操纵,信息传播缺乏透明度以及对目标人群缺乏说服力的技术。本文使用嵌入有说服力技术的洪水预测和咨询系统(FPA)提出了洪水预测的新领域。在这项工作中应用了一种混合研究方法,即面向对象的分析和设计方法(OOADM)和数据挖掘的跨行业标准过程(CRISP-DM)的组合。ooadm用于开发移动应用程序,而Crisp-DM用于为该应用程序创建数据驱动洪水预测模型。这种混合方法允许采用全面而强大的方法。我们使用机器学习技术来解决该问题以及测试系统的Nimet数据集。ml算法,例如SVM,随机森林和XGBoost,用于在Nimet数据集上执行预测。随机森林和XGBOOST的准确性为100%,而SVM获得91.67%。在尼日利亚的Cross River State(CRS)进行了调查,以评估洪水受害者关于使用说服力技术的洪水受害者的反应,其中76.56%的受访者说有说服力的技术未使用过过去的洪水受害者。91.15%的受访者用有说服力的技术来支持FPAS系统。关键字:洪水预测和咨询系统(FPA),机器学习,区块链,OOADM,CRISP-DM,NIMET
b'we提出了一个以福利为中心的博览会加强学习环境,在该环境中,代理商享受一组受益人的矢量值得奖励。给定福利函数W(\ xc2 \ xb7),任务是选择一个策略\ xcb \ x86 \ xcf \ x80,该策略大约优化了从start state s 0,即\ xcb \ xcb \ x86 \ xcf \ xcf \ xcf \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ xmax \ xcf \ x80 w v \ xcf \ x80 1(s 0),v \ xcf \ x80 2(s 0),。。。,v \ xcf \ x80 g(s 0)。我们发现,福利最佳政策是随机的,依赖起始国家的。单个行动是错误是否取决于策略,因此错误的界限,遗憾分析和PAC-MDP学习不会容易概括为我们的设置。我们开发了对抗性的KWIK(KWIK-AF)学习模型,其中在每个时间步中,代理要么采取勘探行动或输出剥削策略,因此勘探行动的数量是有限的,并且每个利用策略都是\ xce \ xce \ xb5-Welfelfare-welfelfare-Wertal的最佳。最后,我们将PAC-MDP减少到Kwik-af,引入公平的显式探索漏洞利用者(E 4)学习者,并证明其Kwik-af学习了。
•信任:由于过去的经验或他们对服务的看法,该人不信任专业人士。•强制控制:该人受到第三方的强烈影响,例如可能遭受家庭虐待,财务虐待或心理虐待。•缺乏通信方法:该人可能无家可归或没有固定的住所,并且可能无法接收信件。他们也可能无法访问手机或座机。•创伤:个人有创伤和随后的创伤反应的经历(请参阅有关创伤知情方法的部分)。•恐惧:这个人担心他们可能会被撤离家园,或者担心对自己或他人的后果或影响,包括推荐社会服务。•服务不适合个人的需求:服务可能不够灵活,无法以
该预印本版的版权持有人于2024年6月12日发布。 https://doi.org/10.1101/2024.06.11.598423 doi:Biorxiv Preprint
利用人工智能减轻青少年危险行为:范围界定审查方案 Hamidreza Sadeghsalehi a 和 Hassan Joulaei a,* a 伊朗设拉子医科大学健康研究所卫生政策研究中心 * 通讯作者(joulaei_h@yahoo.com) 青少年特别容易从事暴力、无保护性行为和药物滥用等危险行为,这些行为会对他们的健康和发展产生重大的负面影响。人工智能 (AI) 的最新进展为解决这些行为提供了创新的解决方案,但关于基于 AI 的干预措施的有效性和实施的证据仍然零散。本范围界定审查旨在系统地探索和绘制旨在减少青少年危险行为的基于 AI 的干预措施的文献。本综述将遵循 Arksey 和 O'Malley (2005) 概述并由 Levac、Colquhoun 和 O'Brien (2010) 改进的方法框架,符合 Joanna Briggs 研究所的指导方针。PRISMA 范围界定综述扩展 (PRISMA-ScR) 将指导报告。搜索策略将在 PubMed、Scopus、Web of Science 核心合集、CINAHL、PsycINFO、Cochrane 对照试验中心注册库、Embase、SID 和 Magiran 中执行,重点关注截至 2024 年 6 月以英语和波斯语发表的文章。两名独立审阅者将使用 Rayyan 筛选标题和摘要,然后对相关研究进行全文筛选。数据将使用标准化表格绘制图表,差异将通过讨论或咨询第三位审阅者解决。数据将以描述性方式综合并以表格、图形和图表的形式呈现。关键词:青少年、人工智能、危险行为、范围审查、干预措施
对诚信和正义立法的改变也将确保我们的机构有更有效地完成重要工作所需的工作。维多利亚时代的检查局将被重命名为由首席诚信检查员领导的维多利亚州的诚信监督,以更好地反映该办公室负责监督维多利亚的诚信机构的重要作用。
上图:寒冷地区测试中心 (CRTC) 于 2024 年 3 月 28 日齐聚一堂,庆祝本财年冬季测试季结束。从最近部署的下一代班组武器步枪、北极机动维持系统和原型重型设备冬季轮胎,开发测试中心今年冬天进行或支持了 12 次测试。CRTC 的内部厨师准备了牛排和虾午餐,并配上所有配菜。现在阿拉斯加的冬天正在逐渐消退,CRTC 将把重点转移到非冬季测试上,同时进行全组织的维护和重置操作。右图:CRTC 指挥官乔纳森·布朗中校欢迎罗西娜·布雷的父母,她目前正在 CRTC 担任开发任务。(塞巴斯蒂安·萨尔洛斯摄)
