从教学转向研究与教学 扎耶德大学的使命宣言指出,研究、学术和创造性活动是大学在当地和世界产生良好影响的方式之一。此外,大学的五大战略目标之一是“加强大学在科学研究和开发中的领导作用,以促进知识型经济”。 在某些可量化的方式中,大学已经重新调整了活动方向,以产生更大的研究影响力。自 2016 年以来,年产出增长了一倍以上。自 2015 年以来,每年的同比产出都增长 20% 或更多。2019 年,扎耶德大学首次进入 QS 全球排名。这在很大程度上受到研究的影响,因为许多指标要么直接(发表的文章、引用、研究收入),要么间接(声誉)衡量研究的数量和影响力。然而,我们在制定未来大学战略时面临的挑战并不只是增加研究成果,我们已经证明我们有能力做到这一点。我们现在需要制定一项战略,从一个主要从事教学、也越来越多地参与研究的机构转变为一个可以描述为研究和教学型大学的机构,这两项活动共同定义了大学的使命和影响。扎耶德大学于 2019 年制定的学术战略计划围绕五个“关键范式”展开。该文件将主要讨论其中的第五个范式,即研究和学术,并将建议大学如何更新该计划以指导其走向研究和教学型大学的未来。战略概述 1. 整合研究和教学。任何朝着更大研究方向发展的战略计划都必须认识到,这将在巨大的教学义务背景下实现,并且在没有单独的政府研究拨款的情况下,资金公式是基于对教学的假设。由于研究和教学这两大支柱是无法分离的,因此最好有意识地将它们整合在一起。这意味着要创造一种文化,让我们自然而然地做更多通常被称为“研究主导的教学”的事情:注重在教学和研究之间建立联系。研究主导教学的一个有益结果是,随着大学越来越接近成为研究和教学机构,学生作为研究人员的共生发展,正如它决心成为的那样。我们应该将 ZU 发展的下一阶段视为与研究人员在技能和成果方面的自身发展类似,然后将其实际纳入大多数教师仍花费大部分职业时间的课程。在“研究主导”和“研究导向”教学环境中(它们略有不同,但相互补充),学院/部门的研究成果成为教学资源,也是学生研究活动的典范,有可能激发他们对研究的热情,就像他们的导师一样。如果结合学生在课程过程中有计划、有目的、分阶段地引入越来越高水平的研究,那么
20。BS Daya Sagar教授21。BL Deekshatulu教授22。Amol Dighe教授23。Balasubramanian Gopal教授24。Maneesha Shreedhar Inamdar教授25。NR Jagannathan教授26。Chanda Jayant Jog教授27。Amitabh Joshi教授28。Rama Kant教授29。Tarun Kant教授30。Avinash Khare教授31。Gopal Krishna教授32。gc kundu博士33。UC Lavania博士34。Gobinda Majumder教授35。BD Malhotra教授36。NK Mondal教授37。Arnab Mukhopadhyay博士38。Ashwini Nangia教授39。SK PAL教授40。Sudhakar Panda教授41。Ashwani Pareek教授42。G教授G Parthasarathy 43。Pradip博士44。Manoj Prasad教授45。Gangan Prathap博士46。SD Rindani博士47。Rajendra Prasad Roy博士48。Mamiyil Sabu教授49。SK Saidapur教授50。Poonam Salotra博士51。Shobhona Sharma教授52。Yogesh Shouche博士53。Ajit Iqbal Singh教授54。Kulinder Pal博士Singh 55。Mewa Singh教授56。KN Singh教授57。RS Singhal教授58。Sneh Lata Singla-Pareek博士59。Somdatta Sinha教授60。Pradeep Srivastava教授61。Kandaswamy Subramanian教授62。Qudsia Tahseen教授63。BK Thelma教授64。KC Upadhyaya教授66。Anil Kumar Tripathi教授65。教授YD Vanks67。Sheba Vasu教授68。Akhilesh Verma教授
提出了一种基于混合耦合技术的具有宽带外抑制的紧凑型双频带带通滤波器 (BPF)。该 BPF 由两个混合螺旋耦合谐振器组成,其中谐振器之间的电耦合和磁耦合可以为双频带产生两个传输路径。这种双频带 BPF 具有宽带外抑制。此外,它的通带频率和带宽可以轻松控制。为了说明其工作原理,给出了一个具有偶模和奇模分析的等效电路。这种双频带 BPF 采用硅集成无源器件 (IPD) 技术制作。制作的双频带 BPF 具有 1.6 mm × 0.54 mm × 0.23 mm 的紧凑尺寸,并进行了测量。测量结果表明,这种双频带 BPF 可以产生 2.45 GHz 和 6.15 GHz 的两个频带。此外,在 7.8 至 20 GHz(8.16 f 0)范围内可实现超过 20 dB 的抑制。模拟结果和测量结果具有很好的一致性。
收到2022年12月4日; 2023年8月3日接受;出版于2023年8月17日作者隶属关系:1分子环境微生物学实验室,韩国首尔韩国环境科学与生态工程系,韩国共和国。*信件:Woojun Park,WPARK@韩国。AC。KR关键词:抗生素耐药性;生物膜; DNA甲基化;外排泵;表观遗传学;甲基转移酶。缩写:AR,抗生素耐药性; Azi,阿奇霉素; CCCP,羰基氰化物3-氯苯基氢气; Col,Colistin; Ery,红霉素; Etbr,溴化乙锭; Gen,庆大霉素; IPD,脉间持续时间; Kan,Kanamycin; 6mA,n -6-甲基丹宁; 4MC,n -4-甲基环肽; 5MC,5-甲基胞嘧啶; MEM,MeropeNem; MIC,最小抑制浓度; MTase,甲基转移酶;小睡,核苷相关蛋白;也不,诺福路吗? OMV,外膜外囊泡; PMB,多粘蛋白B; rif,利福平; RM,限制修改; SEM,扫描电子显微镜; SMRT-SEQ,单分子实时测序; TF,转录因子; TMP,甲氧苄啶。†这些作者对此工作数据声明也同样贡献:本文或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用三个补充数据和六个补充表。001093©2023作者
是由此动机,引起了人们对新2D半导体进行光催化水分裂的关注。对于完全光催化的水分裂,2D半导体应具有合适的带边缘对准,以满足光催化水分裂的带结构需求,包括带隙大于1.23 eV,并相对于v h + vh + vh +较高的势值(vbm)和最小值(cbm),并导致距离较高(CBM)(CBM)。 v oh - /o 2 = - 5.67 eV)。7 - 10此外,要考虑pH值范围为0到14,2D半导体光催化剂的带隙应大于2.0 eV,以确保光催化水分的还原反应。11 - 14此外,足够大的过电势和强大的可见光光吸收对于确保足够的驱动能量和相对较高的太阳能转化效率也至关重要。基于上述,全面的2D
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
无线传感器已启用了许多关键应用程序。由于其能量限制,当今无线传感器传达了偶尔的短样本或预定的数据收集数据的汇总统计数据。这意味着在高保真度中计算所有其他统计量会产生额外的通信和能量开销。本文介绍了JOLTIK,这是一个框架,可用于低功率无线传感器的一般,防止和节能分析。JOLTIK是一般的,因为它总结了来自低功率设备的感知数据,而无需对哪种特定的统计指标进行假设,并且在云上需要进行未来的统计指标,这意味着它支持了新的,无法预料的指标。JOLTIK建立在通用草图中最新的理论进步之上,这可以使Joltik传感器节点报告观察到的数据的紧凑摘要,以实现大量的统计摘要。我们解决了关键的系统设计和实施挑战,这些挑战在实现低功率制度中通用素描的潜在效果时会出现的通信,记忆和计算瓶颈。我们提出了lorawan nucleo-L476RG板和传感器中JOLTIK的概念验证测试床。与传输原始数据相比,JOLTIK在能源成本上可提供高达24.6倍的能源成本,并且在能量准确的票据方面胜过许多天然替代方案(例如,子采样,自定义草图,压缩感应和损失的压缩)。
结构该课程应在完全离线模式下进行,讲座24小时和24小时的教程。更多详细信息可以在网站上找到:https://sites.google.com/view/giansparsegraph/home重要日期的最后日期注册的最后日期:2025年1月31日(优先级给予较早注册的人)接受: (星期日)2025)参与▪主要目标参与者是博士学位。来自数学或计算机科学的学生或研究兴趣的相关部门在于图理论和图形算法。本课程可能会导致研究项目和合作。▪高级大师(M.Sc./m.tech。或同等的)学生也鼓励具有特殊兴趣和背景的学生和算法参与。▪来自知名的学术机构和技术机构的感兴趣的教职员工也被视为潜在参与者。
摘要 — 本文介绍了一种基于扰动双模基片集成波导 (SIW) 腔的紧凑型新型宽阻带带通滤波器 (BPF)。在 SIW 腔体中心引入扰动金属通孔,通过将 TE 101 模式的谐振频率移向 TE 201 模式来实现双模 SIW 腔体。此外,通过将外部端口设置为高阶杂散模式的电场零点位置,可以实现宽阻带 BPF。通过抑制至少包含七种模式的不需要的模式,可以在单个 SIW 腔体中获得最宽的阻带,最宽的阻带可达 2 f 0。为了验证所提出的宽阻带滤波器,设计、制造并测量了两个原型,阻带为 2 f 0,抑制水平分别优于 20dB 和 30dB。
地球轨道更加拥挤,拥挤会导致两个轨道物体发生碰撞的概率增加。就像我们重视地球的环境保护一样,以地球为中心的太空产业的未来必须安全和可持续地进行。空间领域感知 (SDA) 和空间交通管理 (STM) 是近乎实时的连续操作,需要不断努力,部分原因是轨道体具有类似天气的混乱性质。太阳辐射压力、驻留空间物体 (RSO) 姿态、轨道机动、大气密度波动和排气等因素与传播模型有巨大不同。从根本上说,对地球轨道上的所有物体有精确、实时和整体感知的唯一方法是建立一个网络来持续监测它。自动化是这种监视网络的关键。空间监视网络 (SSN) 提供了用于 SDA 的大部分数据。 SSN 可探测、跟踪、识别并维护地球轨道上超过 26,000 个物体的目录 [1]。space-track.org 上公开的目录是美国太空司令部 (USSPACECOM) 致力于信息共享以促进安全和可持续的太空环境的一部分。