液晶弹性体 (LCE) 表现出一些显著的物理特性,例如在不同性质的适当环境刺激(如热刺激)下可引起可逆的较大机械变形,这使得它们可以用作软致动器。LCE 所表现出的独特特性源于它们的各向异性微结构,其特点是嵌入聚合物网络中的液晶原分子的优先取向。LCE 设计中的一个悬而未决的问题是如何控制它们的驱动效率:液晶原分子的数量、它们如何连接到网络、有序度、交联密度是一些可控参数,然而,除了最后一个参数外,它们的空间分布一般无法调整。在本文中,我们开发了一个基于微机械的理论框架来模拟和探索网络交联密度对液晶弹性体元件机械驱动的影响。在此背景下,用于获得弹性体交联网络的光诱导聚合(光聚合)尤其令人感兴趣,它适用于精确调整材料内的交联密度分布;该技术能够获得分子级架构的 LCE,从而实现可获得驱动的最佳设计。在智能结构元件(LCE 微结构设计和优化)内正确设置交联密度排列的可能性代表了一种创建具有材料微结构编码所需驱动能力的分子级工程 LCE 元件的有趣方法。
主动纤维激光器在行业中广泛用于不同的制造应用,从切割到焊接和添加剂制造。最近引入了多核光纤激光器,这些源可以灵活地将功率密度分布(PDD)从常规高斯曲线转换为环形形状。尽管仍在探索新颖光束比传统束相比的优势,但建模工具来定义PDD形状的需求变得更加明显。这项工作研究了高斯对环轮廓的分析建模,目的是朝着标准化参数转向制造过程。所提出的模型结合了高斯和环形成分,以定义新型梁形状。在评估的不同模型中,圆环和多高斯方法表现出最佳拟合质量,从而实现了PDD描述性指标的定义。开发的建模框架已在具有双核光源的工业激光粉末融合(LPBF)系统上进行了验证。评估了沿传播轴的光束形状变化,以分析使用开发的梁参数散腹的效果。最终,最佳性能模型通过板体验的珠子进一步验证,以解释如何使用高斯或环形梁曲线共同利用模型系数来预测材料响应。
探测纳米颗粒重新执行和聚合物纳米复合结构中的聚合物基质之间形成的区域的机械行为,称为“相间”,这是一个主要挑战,因为这些区域很难通过实验方法进行研究。在这里,我们准确地表征了聚合物纳米复合材料的异质机械行为,重点是通过纳米力学模拟和数值均质化技术的组合来关注聚合物/纳米芯的相互作用。最初,使用详细的原子分子动力学模拟研究了用二氧化硅纳米颗粒加固的玻璃状聚(乙烷)聚合物纳米复合材料的全局机械性能,均以1.9%和12.7%的硅胶体积分数。接下来,通过探测在平衡处纳米列列附近的聚合物原子的密度分布曲线来鉴定聚合物/二氧化硅相间的厚度。根据此厚度,将相互间隙细分以检查机械性能的位置依赖性变化。然后,使用连续力学和原子模拟,我们继续计算有效的Young模量和Poisson的聚合物/纳米颗粒间相的比例,作为距纳米颗粒距离的函数。在最后一步中,提出了一个反数值均质化模型,以根据比较标准与MD的数据进行比较标准来预测相间的机械性能。发现结果是可以接受的,这增加了准确有效地预测纳米结构材料中界面特性的可能性。
点云完成指的是从部分3D点云中完成3D形状是3D点云分析任务的基本问题。从深度神经网络的发展中受益,对点云完成的研究近年来取得了长足的进步。ever,如现有方法所涉及的明确局部区域分区使它们对点云的密度分布敏感。此外,它提供有限的接收场,可防止从远程上下文信息中捕获功能。为了解决问题,我们利用交叉注意和自我注意力的机制来设计新型的神经网络,以通过隐式局部区域分区完成点云完成。提出了两个基本单元的几何细节(GDP)和自我功能增强(SFA),以通过注意机制以简单而有效的方式直接建立点之间的结构关系。然后,基于GDP和SFA,我们构建了一个新框架,该框架使用流行的编码器架构进行点云组合。所提出的框架,即Pointattn,是模拟的,整洁而有效的,可以精确捕获3D形状的结构信息,并以详细的几何形状预测完整的点云。实验结果表明,我们的PointAttn在多个具有挑战性的基准上优于最先进的方法。代码可在以下网址找到:https://github.com/ohhhyeahhhh/pointattn
混合纳米电子器件通过将超导体的宏观相位相干性与半导体器件的电荷密度控制相结合,为开发量子技术提供了一个有前途的平台。本论文重点研究混合纳米电子器件的建模及其在研究物质拓扑相和量子信息处理中的应用。论文的第一部分介绍了一种用于静电建模的新型无轨道方法。该方法显著提高了界面附近密度分布的精度,同时最大限度地降低了计算成本。接下来,我们使用基于对称性的非局部电导谱方法来研究多端器件中的传输测量。这种方法可以识别自旋轨道耦合的方向并检测非理想效应。然后,论文探讨了铁磁混合异质结构,它通过结合磁性绝缘体插入物来实现对有效磁场的局部控制。我们研究了超导和铁磁邻近效应的相互作用,并提出了一种用于展示拓扑超导的平面设计。我们还展示了如何使用该平台来实现可配置的 0-π 约瑟夫森结,以及如何实现非正弦电流相位关系。最后,本论文研究了以高次谐波为主的结在超导量子比特中的应用。我们提出并研究了一种耦合方案,用于在异质量子架构中纠缠奇偶校验保护的量子比特和可调谐通量的传输子。
摘要 虽然在没有自由液体的情况下,通过极度干旱的表面交换的蒸汽会影响沙海的水平衡,但由于缺乏具有精细空间分辨率的精确仪器,其机制记录不多。为了纠正这个问题,我们报告了流动沙丘表面下方的体积密度分布和蒸汽质量分数的时空变化,这些变化是用对吸附在沙粒上的微小水膜敏感的多传感器电容探头获得的。我们还记录了 2 天内的风速和风向、环境温度和相对湿度、净辐射通量和地下温度分布。数据验证了蒸汽质量分数的非线性模型。与通过谷物传导的热量不同,蒸汽通过平流和扩散渗透到间隙孔隙空间。在比蒸发更长的时间尺度上,吸附膜与周围环境保持平衡并阻碍分子扩散。它们与地下温度的非线性耦合导致蒸汽分布出现拐点,而在更简单的扩散系统中则没有对应现象。当风在地形上引起细微的压力变化时,就会出现孔隙平流。在风沙输送期间,流沙会间歇性地使地表脱水,引发瞬时蒸汽波,其振幅在特征长度上呈指数衰减,这意味着吸附率受动力学限制的活化过程控制。最后,探测器产生与大气边界层的扩散和平流交换。在白天,它们的总通量小于预期,但几乎与地表和高空的蒸汽质量分数之差成正比。在夜间更稳定的分层下,或在风沙输送期间,这种关系不再成立。
摘要。双重差异技术是Champ的标准处理方法(具有挑战性的Minisatellite有效载荷)GPS(全球定位系统)掩盖数据,以纠正卫星时钟错误。为了应用此技术,需要实施全球基金GPS地面网络。该网络(“高率和低潜伏期网络”)是由Geoforschungszentrum Potsdam(GFZ)和JET推进实验室(JPL)共同安装的,以准备Champ Sacdultation实验,并由这两个机构共同运行。目前(2001年5月/6月)由28个站组成(18个站点(由JPL资助和经营,由GFZ资助和运营)。讨论了将地面站数据用于GPSSacultation处理的方面。网络配置允许每个掩盖事件约3.5个地面站进行掩盖数据处理。发现该冗余的全球分布是不规则的。网络满足数值天气预测(NWP)系统施加的低潜伏期要求。首次将1/5、1/10和1/30 Hz的采集率降低到GPS掩盖数据处理中。对于1,400个垂直干燥温度剖面的三个结果集(分别使用1/5、1/10和1/30 Hz),表明,与相应的气象分析相关的干燥温度的平均值和标准偏差几乎与引用1 Hz数据集的平均值相同。1简介德国地球科学冠军卫星于2000年7月15日从俄罗斯宇宙斑块发射。冠军的测量方法用于确定地球的重力和磁场,并使用创新的GPS无线电掩盖技术在全球尺度上获得有关垂直温度,湿度和电子密度分布的精确信息(Reigber等,2002)。
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行
主动剂将存储或环境能量转换为机械工作,将其注入系统的最小尺度[1-5]。他们通常通过某种形式的自我推测引入活动,通过比对或吸引力抑制力与邻居相互作用,并可能受到噪声的影响。近年来,已经研究了许多不同的活动系统模型,具有多种参数组合,这可能会导致各种方案和非平衡阶段。到目前为止,只有少数几个被鉴定出来,与具有各种形式的(极性或列表)定向秩序的自组织状态[6-8],聚类[9-12]或相位分离[13,14];以及代理在随机变化方向上移动的无序状态。显示出取向秩序的最多研究的阶段之一的特征是集体运动,在该状态下,所有试剂都均为对齐并朝着共同的方向前进[15,16]。可以在不同类型的生物学系统中找到集体运动的例子,包括环骨骼运动蛋白[17-19],细菌菌落[20-22],昆虫群[23,24],鸟羊群[25,26]和鱼类学校[27-30]。它也可以在人工系统中发展,例如主动胶体悬浮液[11],胶体辊[31,32],振动的极性磁盘[33,34]或机器人群[35 - 42]。这种类型的自组织最初被认为需要局部比对相互作用[43],但现在已显示出从吸引力 - 抑制力和标题方向之间的局部耦合中出现的[44,45]。无论其潜在机制如何,在所有这些情况下,集体运动都对应于从无序阶段出现的对齐剂的有序阶段。此外,两个阶段有时被细分为具有不同密度分布的参数区域[9,10,12,14,46 - 51]。除了集体运动之外,其他集体状态最近在弹性或堵塞的活动中被确定
X 射线反射率 (XRR) 被广泛用于研究硬质和软质凝聚态材料的表面和界面,包括二维材料、纳米材料和生物系统。它能够以亚埃的精度推导出材料表面区域沿法线的横向平均电子密度分布。[4–6] 这有助于确定各种参数,包括表面粗糙度、单层或多层材料的结构以及毛细波对液体表面的影响。高亮度同步加速器 X 射线束能够在环境条件下实时在分子水平上分辨材料结构,而其他表面敏感实验技术几乎无法做到这一点。[7] 此类实验的例子是使用专用设备和样品池研究液体表面和界面。[8–11] 然而,存在与液体 XRR 相关的特殊问题。液体和支撑物之间的润湿角会导致样品液体弯曲,这通常会使数据分析复杂化。 [12] 这个问题可以通过利用能够处理大面积样品的样品环境来解决,例如朗缪尔槽 [13] 应用特殊的数据处理方法 [12,14] 或使用 X 射线纳米束。 [15] 然而,在某些情况下,可以充分利用样品曲率,例如 Festersen 等人 [15] 使用宽平行同步加速器光束“一次性”记录 XRR 曲线,但散射矢量 q 的范围有限。 专用于原位和/或原位 XRR 研究的样品环境 [16] 的最新发展开辟了新的机遇,例如,通过化学气相沉积 (CVD) 研究在液态金属催化剂 (LMCats) 上生长 2D 材料的过程。 [17] 这些系统有望生长高质量的材料 [18] 但同时,对实验的要求很高。 [19] 它们必须适应高操作温度、高材料蒸发以及在大气压下暴露于反应气体混合物。此外,它们还局限于有限尺寸的样本