提取方法在裂解后,将预填充的试剂墨盒加载在Magbinder®Fit24上,并选择了MB FIT24™CFDNA试剂盒的预加载提取脚本并在仪器上运行。所有样品均在Magbinder®拟合24仪器上运行,同时将磁杆一致工作,以在试剂盒的不同井中拾取,转移和释放磁性颗粒,以在末端在电流管中提供纯化的CFDNA。cfDNA在100 µl的体积中洗脱,使用Magbinder®拟合24的协议时间约为55分钟,从弹药放置到CFDNA洗脱。
图 2 富集具有低细胞表面岩藻糖基化的细胞。(A)Fut8 和对照池以及富集池和克隆的 AAL-FITC 染色。仅对生成的三个对照池和 Fut8 池中的一个进行染色并用于进一步富集。每个组中选择用于进一步评估的克隆都标有星号(参见图 S3 中仅选定的克隆)。(B)对来自 a) 的 FITC 信号的 MFI 进行量化。点表示每个染色池或克隆的测量值。(C)对对照和 Fut8 池以及在 6 天批次中培养的选定富集池和克隆中的 Fut8 基因表达进行 qPCR 量化。所有三个未富集的对照和 Fut8 池都进行了培养。点表示池(条 1、2、4、5)或单个克隆(3 和 6)的生物学重复。误差线表示池或单个克隆的生物学重复的 SEM。使用非配对 t 检验来计算对照和 Fut8 富集克隆之间的统计学意义
1 二.物理研究所,Justus-Liebig-Universit¨at,35392 Giessen,德国 2 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH,64291 Darmstadt,德国 3 TRIUMF,温哥华,不列颠哥伦比亚省 V6T 2A3,加拿大 4 曼尼托巴大学物理与天文系,温尼伯,曼尼托巴省 R3T 2N2,加拿大 5 波兰科学院核物理研究所,PL-31 342 Krak´ow,波兰 6 玛丽居里大学物理研究所,PL-20 031 Lublin,波兰 7 维多利亚大学物理与天文系,维多利亚,不列颠哥伦比亚省 V8P 5C2,加拿大 8 不列颠哥伦比亚大学物理与天文系,温哥华,不列颠哥伦比亚省 V6T 1Z1,加拿大 9 物理与爱丁堡大学天文学系,爱丁堡 EH9 3FD,苏格兰,英国 10 西蒙弗雷泽大学化学系,本拿比,不列颠哥伦比亚省 V5A 1S6,加拿大 11 麦吉尔大学物理系,H3A 2T8 蒙特利尔,魁北克省,加拿大 12 斯特拉斯堡大学,CNRS,IPHC UMR 7178,F-67 000 斯特拉斯堡,法国 13 约克大学物理系,约克 YO10 5DD,英国 14 卡尔加里大学物理与天文学系,卡尔加里,艾伯塔省 T2N 1N4,加拿大 15 胡阿里布迈丁科技大学物理学院,BP 32,El Alia,16111 Bab Ezzouar,阿尔及尔,阿尔及利亚 16 Academy of Sciences, BG-1784 Sofia, Bulgaria 17 Helmholtz Forschungsakademie Hessen fr FAIR (HFHF), GSI Helmholtzzentrum fr Schwerionenforschung, Campus Gieen, 35392 Gieen, German 18 郑州大学物理与微电子学院,郑州 450001,中国(日期:2021 年 7 月 20 日)
阿尔茨海默氏病(AD)是一种神经退行性疾病,伴随着额叶皮层和海马的神经免疫性炎症。最近,已经记录了受广泛影响的大脑中细菌的存在,从而引发了人们对它们在AD相关神经炎症中的潜在作用的猜测。然而,受AD影响的人类大脑中细菌的表征尚无定论。这项研究旨在通过检查与AD相关的神经退行性区域(额叶皮层和海马)以及非AD-AD-相关下丘脑的脑组织来研究特定细菌和AD病理之间的潜在分析。采用16S rRNA基因测序,来自四个患有正常脑组织学(N)患者的30个后脑脑介绍样品,并分析了四名AD患者,以及三个空白对照。表征脑细菌的一种非常低的生物量,其整体结构主要由大脑区域而不是AD的存在描绘。虽然大多数分析的参数在N和AD组之间没有显示出脑细菌的显着区别,但在与AD相关的神经退行性区域中氯乙酰基诺曼斯的独特检测脱颖而出。此外,与牙周病原体相反,与牙周病原体相关的细菌在AD大脑中富含。这项研究的发现为细菌感染与AD神经炎症之间的潜在联系提供了宝贵的见解。
Illumina DNA准备富集的功能是Illumina富集作品集中最快的工作流程。用户友好,兼容自动化的解决方案支持所有经验级别的用户,并为各种实验设计提供了共同的工作流程,包括固定面板,自定义面板和全外观测序。珠子上标记可以使用多种DNA输入量和各种样本类型。具有富集的Illumina DNA准备与Illumina和第三方富集探针/面板兼容,从而实现了内容可移植性。具有富集溶液结合Illumina SBS Chemistry的创新Illumina DNA Prep,提供了最佳的靶向富集和外显子组测序体验。
靶标富集的纳米孔测序和从头组装揭示了 CRISPR-Cas9 在人类细胞中诱导的 1 个复杂的靶基因组重排的共现 2 3 4 5 Keyi Geng 1、Lara G. Merino 1、Linda Wedemann 1、Aniek Martens 1、Małgorzata Sobota 1、6 Yerma P. Sanchez 1、Jonas Nørskov Søndergaard 1、Robert J. White 2、Claudia Kutter 1 * 7 8 1 瑞典卡罗琳斯卡医学院生命科学实验室微生物学、肿瘤和细胞生物学系 10 2 约克大学生物系,英国约克 11 * 通讯作者。电话:+46 (0) 70 4933896。电子邮件:12 claudia.kutter@ki.se 13 14 15 标题:Xdrop-LRS 揭示 CRISPR-Cas9 的靶向效应 16 17 18 关键词 19 意外的 CRISPR-Cas9 编辑、组合基因组复制-倒置-整合、20 基于液滴的靶向富集、长读测序、从头序列组装 21 22 23 摘要 24 CRISPR-Cas9 系统被广泛用于通过双 25 向导 RNA 永久删除基因组区域。CRISPR-Cas9 可能会引起基因组重排,但持续的技术发展使得表征复杂的靶向效应成为可能。我们将创新的基于液滴的靶向富集方法与长读测序相结合,并将其与定制的从头序列组装相结合。这种方法使我们能够在靶基因组位点内以千碱基规模剖析序列内容。我们在此描述了 Cas9 造成的广泛基因组破坏,包括靶区域基因组重复和倒置的等位基因共现,以及外源 DNA 的整合和聚集的染色体间 DNA 片段重排。此外,我们发现这些基因组改变导致功能异常的 DNA 片段,并可能改变细胞增殖。我们的研究结果拓宽了 Cas9 删除系统的结果范围,强调了细致的基因组验证的必要性,并引入了数据驱动的工作流程,从而能够以卓越的分辨率详细剖析靶序列内容。
喉癌(LC)是头部和颈部第二常见的恶性肿瘤。由于其阴险的性质,大多数患者在被诊断出来时已发展到中期和晚期,缺少最佳治疗期。因此,早期检测,诊断和治疗对于改善LC的预后和提高患者的生活质量至关重要。在这项研究中,通过结合磁珠(MBS)富集策略和抗体-DNA介导的催化发夹自组装(CHA)信号放大效果技术来开发表面增强的拉曼(SERS)传感平台。4-在纳米塔时,将胃苯苯甲酸(4-MBA)和发夹DNA 1(HPDNA1)(hpDNA1)修饰到金纳米果仁酰胺(GNBPS)的表面上。发夹DNA 2(HPDNA2)修饰的MB用作捕获纳米探针。在CHA和磁体诱导的MBS富集的作用下,GNBP可以组装在MB的表面上,形成高密度的“热点”,以增强SERS信号。结果表明,SERS传感平台具有高灵敏度,高特异性和高可重现性的优势,其检测极限(LOD)低至Pg/mL水平。SERS感应平台成功地检测了LC患者血清和健康对照组中CYFRA21-1的表达水平。通过酶连接的免疫吸附测定(ELISA)验证了SERS结果的准确性。因此,该SERS传感器可用于在血清中检测CYFRA21-1,为早期诊断LC提供了一种简单可靠的新方法。
1 日本大阪大学微生物疾病研究所实验基因组研究系,2 日本大阪大学医学研究生院,3 美国德克萨斯州休斯顿贝勒医学院药物发现中心,4 美国德克萨斯州休斯顿贝勒医学院病理学和免疫学系,5 日本大阪大学药学研究生院,6 日本名古屋名古屋市立大学医学研究生院比较与实验医学系,7 日本茨城县筑波市筑波大学医学院解剖学与胚胎学系,8 美国德克萨斯州休斯顿休斯顿大学克利尔莱克分校生物与生物技术系,9 日本东京大学医学科学研究所
Zn 2+是大约850个人类转录因子所需的必需金属。这些蛋白质如何获得其必需的Zn 2+辅因子,以及它们是否对细胞中不稳定的Zn 2+池的变化敏感仍然是开放的问题。使用ATAC-SEQ进行可访问的染色质的区域,并结合转训练因子富集分析,我们研究了不稳定锌池的增加和减少如何影响染色质的可及性和转录因子富集。我们发现685个转录因子基序被差异富集,对应于507个独特的转录因子。在启动子与基因间区域的扰动模式和转录因子的类型截然不同,锌 - 纤维转录因子在升高的Zn 2+中强烈富集在基因间区域中。测试ATAC-SEQ和转录因子富集分析预测是否与转录因子结合的变化相关,我们使用ChIP-QPCR来实现六个p53结合位点。我们发现,对于六个目标,p53结合与ATAC-SEQ确定的局部可访问性相关。这些结果降低了不稳定锌的变化改变染色质的可及性和转录因子与DNA的结合。
NCOA3是通过ESRRB招募到目标基因座的ERRE的。(a)使用先前描述的野生型(WT)或ERRE突变序列的DNA下拉测定法(Feng et al。2009)或Nanog(van den Berg等人 2008)。 生物素化探针(40–50-50碱基对[BP])与来自Flag-EsRRB和NCOA3转染的COS-1细胞的提取物一起孵育,并在链霉亲蛋白珠上回收,并通过Western Blotting可视化与DNA相关的蛋白质。 (b)ESRRB,KLF4,NANOG和SOX2 ERRES的ESRRB和NCOA3富集水平以及一个基因(Inter。) 通过CHIP和QPCR评估的ESC中的控制区域,并相对于输入表示。 数据是三个生物学重复的平均6 SEM。 (c)ESRRB耗竭后的候选基因座的NCOA3和ESRRB富集水平相对于输入表示。 在每个实验中,富集SHGFP转染的细胞的富集设置为100%。 数据是至少两个独立实验的平均6 SD。 B和C中的虚线表示对照IgG(Santa Cruz Biotechnology)的背景富集。 (d)蛋白质印迹显示特定的ESRRB蛋白耗竭后48小时用ShesRRB转染。 请注意,此时NCOA3和OCT4级别不变。 (E)使用Nanog野生型或ERRE突变探针的DNA下拉分析,该探针还包含相邻的OCT – SOX位点(Van Den Berg等人 2008),并从NCOA3,OCT4和SOX2转染的COS-1提取细胞提取物。2009)或Nanog(van den Berg等人2008)。 生物素化探针(40–50-50碱基对[BP])与来自Flag-EsRRB和NCOA3转染的COS-1细胞的提取物一起孵育,并在链霉亲蛋白珠上回收,并通过Western Blotting可视化与DNA相关的蛋白质。 (b)ESRRB,KLF4,NANOG和SOX2 ERRES的ESRRB和NCOA3富集水平以及一个基因(Inter。) 通过CHIP和QPCR评估的ESC中的控制区域,并相对于输入表示。 数据是三个生物学重复的平均6 SEM。 (c)ESRRB耗竭后的候选基因座的NCOA3和ESRRB富集水平相对于输入表示。 在每个实验中,富集SHGFP转染的细胞的富集设置为100%。 数据是至少两个独立实验的平均6 SD。 B和C中的虚线表示对照IgG(Santa Cruz Biotechnology)的背景富集。 (d)蛋白质印迹显示特定的ESRRB蛋白耗竭后48小时用ShesRRB转染。 请注意,此时NCOA3和OCT4级别不变。 (E)使用Nanog野生型或ERRE突变探针的DNA下拉分析,该探针还包含相邻的OCT – SOX位点(Van Den Berg等人 2008),并从NCOA3,OCT4和SOX2转染的COS-1提取细胞提取物。2008)。生物素化探针(40–50-50碱基对[BP])与来自Flag-EsRRB和NCOA3转染的COS-1细胞的提取物一起孵育,并在链霉亲蛋白珠上回收,并通过Western Blotting可视化与DNA相关的蛋白质。(b)ESRRB,KLF4,NANOG和SOX2 ERRES的ESRRB和NCOA3富集水平以及一个基因(Inter。)通过CHIP和QPCR评估的ESC中的控制区域,并相对于输入表示。数据是三个生物学重复的平均6 SEM。(c)ESRRB耗竭后的候选基因座的NCOA3和ESRRB富集水平相对于输入表示。在每个实验中,富集SHGFP转染的细胞的富集设置为100%。 数据是至少两个独立实验的平均6 SD。 B和C中的虚线表示对照IgG(Santa Cruz Biotechnology)的背景富集。 (d)蛋白质印迹显示特定的ESRRB蛋白耗竭后48小时用ShesRRB转染。 请注意,此时NCOA3和OCT4级别不变。 (E)使用Nanog野生型或ERRE突变探针的DNA下拉分析,该探针还包含相邻的OCT – SOX位点(Van Den Berg等人 2008),并从NCOA3,OCT4和SOX2转染的COS-1提取细胞提取物。富集SHGFP转染的细胞的富集设置为100%。数据是至少两个独立实验的平均6 SD。B和C中的虚线表示对照IgG(Santa Cruz Biotechnology)的背景富集。(d)蛋白质印迹显示特定的ESRRB蛋白耗竭后48小时用ShesRRB转染。请注意,此时NCOA3和OCT4级别不变。(E)使用Nanog野生型或ERRE突变探针的DNA下拉分析,该探针还包含相邻的OCT – SOX位点(Van Den Berg等人2008),并从NCOA3,OCT4和SOX2转染的COS-1提取细胞提取物。