大量证据表明,β淀粉样蛋白 (A β ) 在阿尔茨海默病 (AD) 的发病机制中起着致病和起始作用。然而,只有少数抗淀粉样蛋白药物在临床试验中表现出有意义的疗效。我们评估了长期试验中具有积极临床或生物标志物作用的抗淀粉样蛋白药物的统一特征,并分析了药理学特征如何决定它们的临床产品特征。四种有可能在短期内获得批准的药物符合这些标准:注射抗体 aducanumab、gantenerumab 和 BAN2401,以及小分子口服药物 ALZ-801。Aducanumab 和 BAN2401 对临床和生物标志物结果均表现出显著疗效;gantenerumab 表现出显著的生物标志物作用,迄今为止尚无临床疗效报告;和 ALZ-801 在载脂蛋白 E 基因 (APOE4) ε 4 等位基因纯合的高危患者人群中表现出显著的临床效果,且海马体积呈剂量依赖性保存。我们探讨了这些药物的药理特性(即对 A β 寡聚体的选择性、血浆半衰期、脑渗透性和脑暴露峰值时间)如何决定它们的临床特征。这些药物共同的一个关键特性是它们能够作用于神经毒性的可溶性 A β 寡聚体,尽管程度不同。Aducanumab 和 gantenerumab 部分靶向寡聚体,同时主要清除不溶性淀粉样斑块;BAN2401 优先靶向可溶性原纤维(大寡聚体)而不是斑块;ALZ-801 阻断寡聚体的形成而不与斑块结合。对 A β 寡聚体的选择性程度和脑暴露决定了临床疗效的大小和开始,而斑块的清除与血管源性脑水肿有关。只有最高剂量的 aducanumab 和 BAN2401 才显示出适度的疗效,而更高的剂量受到血管源性水肿风险增加的限制,尤其是在 APOE4 携带者中。这些限制是可以避免的,并且可以通过小分子药物来提高疗效,这些药物可以选择性地抑制 A β 寡聚体的形成或阻断其毒性,而不会清除淀粉样斑块。最先进的选择性抗寡聚体药物是 ALZ-801,一种优化的曲米普罗酸口服前体药物,它在纯合 APOE4/4 AD 受试者中显示出疗效。ALZ-801 选择性地完全抑制 A β 42 寡聚体的形成
生长抑素和小清蛋白中间神经元的分离 体内淀粉样蛋白寡聚体损害海马 Theta 和 Gamma 振荡的回路功能障碍 脑结构和功能 解剖学和形态学 21 项建议 1 项
通缉! 名称 α-突触核蛋白,别名:NACP、PARK1/PARK4 地址 染色体 4q22.1 身高/体重 140 个氨基酸,14 kDa 蛋白质 外观 单体,四聚体 α -螺旋寡聚体,与生物膜相关 犯罪聚集体可导致帕金森氏症
摘要:基于纳米载体的药物输送系统的开发是药理学,有希望的靶向递送和药物毒性降低的主要突破。在细胞水平上,药物的封装显着影响纳米载体 - 膜相互作用引起的内吞过程。在这项研究中,我们合成并表征了由N-乙烯基-2-吡咯酮的两亲寡聚组组装的纳米载体,并与末端硫代二烷基(PVP-OD)组成。发现PVP-OD的溶解自由能线性地取决于其亲水性部分的分子质量至M n = 2×10 4,从而导致临界聚集浓度(CAC)对摩尔质量的指数依赖性。将一种模型疏水化合物(DII染料)加载到纳米载体中,并以18小时的比例表现出缓慢的释放到水相中。使用胶质母细胞瘤(U87)和纤维细胞(CRL2429)细胞比较了负载的纳米载体和游离DII的细胞摄取。尽管DIV> DII/PVP-OD纳米载体和自由DII均被Dynasore抑制,这表明在存在Wertmannin的情况下观察到了自由DII的摄取率的降低。这表明,虽然巨细胞增多症在摄取低分子成分中起作用,但通过将DII掺入纳米载体中可以避免这种途径。
多发性硬化症 (MS) 是一种使人衰弱的自身免疫性疾病,影响着全球数百万患者,对女性的影响尤为严重(4:1),并且经常在生命中高产阶段发病。这种疾病会影响脊髓和大脑,其特征是严重的神经炎症、脱髓鞘和随后的神经元损伤,导致行动不便等症状。虽然非靶向和全免疫抑制疗法已被证明可以改变病情并控制(或延长)许多患者的症状,但很大一部分患者无法获得缓解。最近的研究表明,通过选择性炎症小体抑制更有针对性的神经炎症缓解可以为患者提供缓解,同时保留免疫功能的关键组成部分。我们在此展示了使用炎症小体抑制纳米寡聚体(NF- κ B1、TNFR1、TNF- α、IL-6)筛选潜在治疗靶点,这些靶点达到或远远超过市售的小分子对应物,如鲁索替尼、MCC950 和 Deucravacitinib。使用人脑类器官模型,顶级纳米寡聚体组合(NF- κ B1+TNFR1:NI111 和 NF- κ B1+NLRP3:NI112)被证明可以显著减少神经炎症,而不会对类器官功能产生任何可观察到的负面影响。使用腹膜内 (IP) 注射在侵袭性实验性自身免疫性脑脊髓炎 (EAE) 小鼠 MS 模型中进一步测试这些顶级纳米寡聚体组合,结果表明,NF- κ B1 和 NLRP3 靶向纳米寡聚体组合 NI112 可挽救小鼠,且不会出现明显的活动能力丧失或残疾,大脑和脊髓组织学炎症极小,脊髓免疫细胞浸润极少甚至没有,也没有脱髓鞘,与未接受 EAE 注射(阴性对照)的小鼠相似或相当。与接受盐水(假手术)治疗的 EAE 小鼠相比,接受 NI111(NF- κ B1+TNFR1)治疗的小鼠也表现出神经炎症减少,与其他炎症小体抑制小分子治疗相当/相似,尽管它明显高于 NI112,导致随后的临床结果恶化。此外,使用较低剂量的口服 NI112 制剂治疗可显著降低 EAE 严重程度,尽管由于给药和配方/灌装和完成差异,差异较大。总体而言,这些结果表明,进一步开发和测试这些炎症小体靶向纳米聚合物作为多种神经退行性疾病的有效神经炎症治疗方法的潜力,并可能使许多患有 MS 等衰弱性自身免疫性疾病的患者受益。
尽管 2020 年我们的科学出版物总数略有下降,但质量的提高体现在平均影响因子的增加(5.89 对比去年的 5.69),以及 74% 的成果发表在 Q1 期刊上。我想重点介绍一下 Mar Orzáez 博士团队在《美国国家科学院院刊》上发表的一篇重要论文。文章“Mcl-1 和 Bok 跨膜结构域:凋亡调节中的意外参与者”描述了一个新发现,即线粒体膜中 Mcl-1 同源寡聚体的形成会诱导细胞死亡。凋亡失调是恶性转化和肿瘤转移的潜在机制之一。因此,我们对参与凋亡途径的分子了解得越多,我们就越能设计出药物来调节癌症中的这一过程,这正是 Orzáez 博士及其团队的目标。
摘要为了区分有害,共生和有益微生物,植物依赖于多糖,例如B-葡萄糖,它们是微生物和植物细胞壁的组成部分。将与细胞壁相关的B-葡聚糖聚合物转化为特定结果,该结果影响植物 - 微生物相互作用是由水解和非溶解度B-葡聚糖结合蛋白介导的。这些蛋白质在微生物定殖过程中起着至关重要的作用:它们会影响宿主和微生物细胞壁的组成和弹性,调节B-葡萄糖寡聚体的倍形浓度的稳态,并介导B -glucan的感知和信号传导。本综述概述了B-葡聚糖及其结合蛋白在植物免疫和共生中的双重作用,强调了最新发现,关于B-葡聚糖结合蛋白的作用,是免疫的模量,以及与伴有的共生受体有关的,涉及微生物良好调节的良好调查。
罕见病影响着全球近 5 亿人,主要影响儿童,并且常常导致生活质量严重下降和治疗费用高昂。虽然人们在开发罕见病的有效治疗方法方面做出了重大贡献,但仍需要更快速的药物发现策略。治疗性反义寡核苷酸可以通过由碱基序列和化学修饰决定的各种机制以高特异性调节靶基因表达;并且在一些罕见神经系统疾病的临床试验中显示出疗效。因此,本综述将重点介绍反义寡核苷酸的应用,特别是剪接转换反义寡聚体作为罕见神经系统疾病的有希望的治疗方法,主要例子是杜氏肌营养不良症和脊髓性肌萎缩症。我们还将简要讨论开发罕见病反义疗法所面临的挑战和未来前景,包括靶点发现、反义化学修饰、治疗验证的动物模型和临床试验设计。
罕见病影响着全球近 5 亿人,主要影响儿童,并且常常导致生活质量严重下降和治疗费用高昂。虽然人们在开发罕见病的有效治疗方法方面做出了重大贡献,但仍需要更快速的药物发现策略。治疗性反义寡核苷酸可以通过由碱基序列和化学修饰决定的各种机制以高特异性调节靶基因表达;并且在一些罕见神经系统疾病的临床试验中显示出疗效。因此,本综述将重点介绍反义寡核苷酸的应用,特别是剪接转换反义寡聚体作为罕见神经系统疾病的有希望的治疗方法,主要例子是杜氏肌营养不良症和脊髓性肌萎缩症。我们还将简要讨论开发罕见病反义疗法所面临的挑战和未来前景,包括靶点发现、反义化学修饰、治疗验证的动物模型和临床试验设计。
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。