作为下一代对撞机,CEPC远远超出了Higgs工厂:•寻找H,Z,B和𝜏的异国情调或罕见衰减以及新物理学•巨大的测量潜在的SM:HIGGS,HIGGS,Electroweak Physics,electroweak Physics,flain Physics,QCD/QCD/Top
CMS沿着大型强子对撞机环位于CERN。它以40 MHz的速率记录了质子质子碰撞的质子胶原碰撞。每个事件记录来自〜10 2 M传感器的信息。多亏了触发系统,每秒仅保存100K事件。〜6 GB/s输出。
抽象的化石燃料满足了人类大部分能量需求,由于其高碳排放而导致气候变化。有两种类型的能源可以替代化石燃料:可再生和核能。核能来源在效率和可持续性方面更有优势。由于脑尿液的产生要低得多,将th th的用作融合反应堆中的核燃料将有助于减少放射性废物。融合反应器被认为是有希望的,仍处于研发阶段。在这方面,混合融合 - 融合反应器似乎更有希望,而最近提出的Muon催化的DD融合与级联反应器的组合值得赞赏。在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。 关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1. 简介在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1.简介
摘要:我们重新评估了不对称暗物质(ADM)的生存能力,该可行性主要与标准模型费米子相关。在有效的相互作用框架中处理这种DM粒子与夸克/lept子的相互作用,我们使用大型强子对撞机(LHC)(LHC)和单声音搜索在大型电子positron(LEP)Collider上得出更新的约束。我们仔细地对这些实验中使用的检测器进行了建模,发现这些探测器具有显着影响。合成了ADM的对称部分的有效an灭的约束以及其他观察性约束,以产生全局图像。与以前的工作一致,我们发现在1-100 GEV范围内的ADM受到了强烈的限制,因此排除了其最佳动机质量范围。但是,我们发现嗜血型ADM仍允许10 GEV DM,包括Collider的边界,直接检测和出色的加热。我们预测,电子峰值碰撞(FCC-EE)的未来圆形对撞机将几乎通过一个数量级来提高对DM-Lepton相互作用的敏感性。
根据带电粒子在大型强子对撞机 (LHC) 等对撞机实验的探测器中留下的命中集合重建带电粒子的轨迹是一项具有挑战性的组合问题,并且计算量巨大。升级后的高亮度 LHC 的输出亮度增加了 10 倍,因此探测器环境将非常密集。传统技术重建粒子径迹所需的时间与径迹密度呈二次方以上关系。准确高效地将留在跟踪探测器中的命中集合分配给正确的粒子将是一个计算瓶颈,并促使人们研究可能的替代方法。本文提出了一种量子增强机器学习算法,该算法使用带有量子估计核的支持向量机 (SVM) 将一组三个命中(三元组)分类为属于或不属于同一条粒子径迹。然后将该算法的性能与完全经典的 SVM 进行比较。与经典算法相比,量子算法在探测器最内层方面的准确度有所提高,这对于轨迹重建的初始播种步骤至关重要。
暗光子的概念[1–3]已被许多理论物理学家和实验物理学家研究过。通常,暗光子与可见物质的相互作用假设为标准模型(SM) U (1) Y规范群和暗U (1) X规范群之间的阿贝尔动力学混合。由于低能对撞机[4–6]、介子衰变[7–9]、束流倾倒实验[10–12]和高能对撞机[13–18]等不同实验的限制,这种U (1)动力学混合不可能很大。然而,解释可重正化的U (1)动力学混合之小并不明显。在本文中,我们将考虑非阿贝尔动力学混合,以实现另一种可能性,即暗光子来自暗SU (2) X规范群,因此它与物质的耦合不在可重正化的水平上出现[19–21]。在暗 SU (2) X 规范群与 SM SU (2) L × U (1) Y 规范群的非阿贝尔动力学混合下,一个暗规范玻色子变成暗光子,而其他玻色子保持稳定形成暗物质粒子。这一情景预测了暗光子和暗物质的近简并质量谱。
大型强子对撞机是欧洲核子研究中心日内瓦设施建造的粒子加速器,其主要目标是研究宇宙知识标准模型中著名的基本粒子的边界。借助 LHC,2012 年对希格斯玻色子等的观测成为可能,随着加速器设计的不断升级,未来几年将描述新的现象。TDE 块构成光束轨迹最后一段的光束倾卸系统,由多个不同密度的石墨块制成。其中,柔性石墨的密度最低(1-1.2 g/cm3)。它与多晶石墨和热解石墨等典型的石墨形式不同,因为在生产过程中不添加粘合剂。由于颗粒粗糙度引起的粘合摩擦力赋予材料典型的柔韧性并有助于变形机制。为了预测材料在梁冲击能量增加时的反应,需要在广泛的温度和应变率范围内深入研究材料行为。在这项初步工作中,在室温下在平面方向上观察了商用柔性石墨(SGL Carbon 的 Sigraflex ®)的静态特性。为了可靠地测量前部和边缘样品表面的应变,采用了两侧 DIC;横梁位移速率在 0.01-10 mm/min 之间变化。最后,讨论了应力应变行为和变形机制。
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
下一代直线对撞机应具有极小的发射度,以实现足够高的亮度。由于相互作用点处的光束尺寸非常小,高度约为十纳米,这些机器对地面运动非常敏感,从而导致不相关的机器组件紊乱。精确对准机器组件对于防止发射度稀释至关重要。1996 年,KEK 开始对电子/正电子直线对撞机的 C 波段(5712 MHz)射频系统的硬件研发。相关进展已在国际会议上报告 [1]。在本文中,我们将报告加速结构的大梁和支撑大梁的主动动子的设计。扩散性地面运动会破坏加速器元件的对准。为了补偿缓慢的地面运动,采用新理念开发了一种主动支撑动子。我们正在对动子进行长期使用质量测试。我们的新型移动器由空气弹簧和多层橡胶轴承 (MLRB) 组成,如图 2 所示。与机械千斤顶相比,空气弹簧的控制更平稳、更精细。我们使用 MLRB 来防止地震引起的支撑台快速弹出运动。移动器的详细设计和特性通过 LON 控制系统展示 [2, 3]。