计划课时 10 计划时间表 先决条件 实验粒子物理背景 描述 实验物理触发和数据采集系统简介。基本元素和定义:触发延迟和触发速率。触发和数据采集之间的联系:死区时间和繁忙状态。多级触发系统,对撞机高能物理触发器。触发器 - DAQ 和相关系统的集成 事件构建、运行控制、在线数据质量。对撞机 HEP 最相关的触发系统的描述:LHC 实验的触发系统。用于固定目标实验和测试光束设置的触发系统。用于粒子和天体粒子物理的无触发 DAQ 系统。触发系统效率对物理测量的影响。
我们报告了量子和经典机器学习技术之间的一致比较,这些技术应用于对矢量玻色子散射过程的信号和背景事件进行分类,该过程在欧洲核子研究中心实验室安装的大型强子对撞机上进行研究。基于变分量子电路的量子机器学习算法在免费提供的量子计算硬件上运行,与在经典计算设施上运行的深度神经网络相比,表现出非常好的性能。特别是,我们表明这种量子神经网络能够正确地对信号进行分类,其特征曲线下面积 (AUC) 非常接近使用相应的经典神经网络获得的特征曲线下面积 (AUC),但使用的资源数量要少得多,训练集中的可变数据也较少。尽管这项工作是在有限的量子计算资源下给出原理证明的演示,但它代表了
虽然首次提出模拟自然界量子力学的建议可以追溯到理查德·费曼 [1],但最近将量子信息理论应用于高能物理系统研究的尝试已证明特别成功。量子态断层扫描就是一个典型的例子,该过程通过对被观察系统的相同副本集合进行一系列互补测量,可以完全重建系统的密度矩阵 [2],非常适用于产生大量事件的对撞机 [3-6],并且已应用于各种高能粒子物理系统的数值模拟研究 [4-7]。包括量子机器学习技术在内的量子算法已被开发用于识别数据中的标准模型及以上特征 [8-10],以及以更经济的计算方式模拟对撞机事件 [11]。
独特的中央生产过程的测量将使大型强子对撞机物理项目扩展到电弱领域和 QCD 领域成为可能,并且对物理的特殊敏感性超出了标准模型。为此,最近安装了 CMS-TOTEM 精密质子光谱仪,旨在在高亮度大型强子对撞机的正常操作条件下运行。光谱仪由位置和时间探测器组成,安装在距 CMS 两侧交互点约 210 m 的位置,位于称为“罗马罐”的移动结构内,可让您更接近光束。从相互作用中完好无损地出现的散射质子,仅损失了一小部分动量,被光束包络外部的大型强子对撞机磁铁偏转,并用硅像素探测器平面进行测量。相反,需要时间探测器来确定主顶点,利用两侧两个质子的到达时间信息,并在此基础上大大减少由于许多堆积事件而导致的背景。由于探测器将受到高辐射注量(估计约为 3 × 10 15 n eq / cm 2 ),因此 CT-PPS 跟踪器选择了所谓的 3D 硅像素传感器。来自三个主要制造商(CNM、FBK 和 SINTEF)的传感器在实验室和辐照前后的光束上进行了测量,以评估其特性和性能。最终探测器中使用了 CNM 传感器,以及为 CMS 像素跟踪器第一阶段升级而开发的读出芯片。两个六层空间站在 2016/2017 年大型强子对撞机冬季停运结束时进行了组装、测试和安装。探测器的调试正在进行中,通过使用从中心像素跟踪器开始开发的采集软件。检测器已经过校准,能够在 CMS 采集链内获取数据。第一次比对运行的数据已成功收集,分析正在进行中。
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。超导磁体的发展离不开超导射频腔的快速发展,超导射频腔用于加速粒子束,这一点从 20 世纪 90 年代 LHC 前身 LEP 的升级,到如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现,都可见一斑。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心 (CERN) 正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学正与工业界一起帮助我们实现全部
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。除了超导磁体之外,超导射频腔也得到了快速发展,用于加速粒子束——正如 20 世纪 90 年代 LHC 前身 LEP 的升级以及如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现所展示的那样。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学与工业界一起帮助我们实现全部
今天,人工智能和机器学习技术具有广泛的应用。机器学习技术的应用正在在高能量物理(HEP)和Astroparpicle物理学的研究领域中获得动力。大型强子对撞机(LHC)的实验以及其他几个基于对撞机的和Astroparpicle实验正在积累大量数据,以精确测量粒子物理学的标准模型参数的精确测量,并在较高的标准模型量表中搜索具有较高标准模型的范围,以使其具有较高的标准模型,以使其具有综合的实验性和实验性。将来,高光度LHC预计提供的数据将比迄今为止可用的数据多十倍。在开发事件分类,对象识别和估计策略方面,在HEP中应用Ma Chine学习的应用已经取得了很大的进步。ML方法有望在未来的数据分析中受到大量使用。
方向和±1mm沿径向方向。- 必要时将真空支撑块设置在长磁铁中。- 对撞机中的基座:设计的钢筋混凝土和钢板。- 助推器中的支撑框架:设计为钢。- 调整机制:楔形调整或螺丝调整,将接口到