我们报告了量子和经典机器学习技术之间的一致比较,这些技术应用于对矢量玻色子散射过程的信号和背景事件进行分类,该过程在欧洲核子研究中心实验室安装的大型强子对撞机上进行研究。基于变分量子电路的量子机器学习算法在免费提供的量子计算硬件上运行,与在经典计算设施上运行的深度神经网络相比,表现出非常好的性能。特别是,我们表明这种量子神经网络能够正确地对信号进行分类,其特征曲线下面积 (AUC) 非常接近使用相应的经典神经网络获得的特征曲线下面积 (AUC),但使用的资源数量要少得多,训练集中的可变数据也较少。尽管这项工作是在有限的量子计算资源下给出原理证明的演示,但它代表了
减少 LHC 预测中的 PDF 不确定性需要深入了解分析之间的差异,即 PDF 集之间的差异不会在以下情况下轻易“消失”
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
模拟量子场论在广泛能量范围内的完整动态需要非常大的量子计算资源。然而,对于粒子物理学中的许多可观测量,微扰技术足以准确地模拟理论有效范围内除有限能量范围之外的所有能量。我们证明有效场论 (EFT) 提供了一种有效的机制,可以将传统微扰理论容易计算的高能动态与低能动态区分开来,并展示了如何使用量子算法从第一原理模拟低能 EFT 的动态。作为一个明确的例子,我们计算了在标量场论中存在两个 Wilson 线的时间有序乘积的情况下真空到真空和真空到单粒子跃迁的期望值,这与粒子物理学标准模型的 EFT 中出现的对象密切相关。计算是使用量子计算机的模拟以及使用 IBMQ Manhattan 机器的测量来执行的。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
该项目提议使用 3FD 流体动力学模型和 UrQMD 和 QGSM 传输模型研究 NICA 对撞机能量下的相对论重离子碰撞 (rHIC) 中的涡量、定向流和强子冻结等现代高能物理中的实际现象。应研究以下现象:反应平面和方位平面中的涡量、涡量中的奇点、超子的极化、涡量和定向流 v 1 的相互关系、v 1 的减小及其在中快速度时的符号变化以及强子的冻结,在 rHIC 期间夸克胶子等离子体 (QGP) 形成的情况下。应将结果与纯强子物质的计算进行比较。这项研究将确定对实验中从解耦阶段到强子阶段的相变信号最敏感的可观测量和分布。
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。