随着人口体重和年龄的增加,烟草的消费,不适当的食物以及近年来体育活动的减少,骨和关节疾病(例如骨关节炎)(OA)在世界上变得越来越普遍。从过去到现在,已经研究并研究了各种治疗策略(例如,微骨折治疗,自体软骨细胞植入(ACI)和骨成形术),并研究了预防和治疗这种疾病。然而,这些方法面临着诸如侵入性,没有完全修复组织和破坏周围组织等问题。组织工程(包括软骨组织工程)是一种微创,创新性和有效的方法之一,用于治疗和再生受损软骨的治疗和再生,这吸引了过去几年中医学和生物材料领域的科学家的注意。具有不同特性的不同类型的水凝胶已成为工程和处理软骨组织的理想候选者。他们可以涵盖其他治疗方法的大多数缺点,并对患者造成最小的次要损害。除了将水凝胶作为理想的策略外,还将新药物输送和治疗方法(例如通过机械信号传导靶向药物输送和治疗)被研究为有趣的策略。在这项研究中,我们审查并讨论了各种类型的水凝胶,用于水凝胶生产的生物材料,靶向软骨的药物输送以及机械信号作为软骨治疗的现代策略。
广泛用于人类的药物在环境中的流行令人担忧,这些药物针对的是存在于各个门类中的关键进化保守生物分子。抗抑郁药是全球使用最广泛的药物之一,其开发目标是针对调节单胺能神经传递的生物分子,从而干扰多种关键神经生理过程的内源性调节。此外,抑郁症发病率的迅速上升导致抗抑郁药的处方和消费率上升,这与全球水环境中抗抑郁药检测报告的增加相一致。因此,人们越来越担心长期接触环境中的抗抑郁药可能会对非目标水生生物造成不利的药物靶标特异性影响。虽然这些担忧导致了大量研究针对一系列毒理学终点,但不同类别抗抑郁药的环境水平对非目标水生生物的药物靶标特异性影响仍有待了解。有趣的是,有证据表明,软体动物可能比任何其他动物门都更容易受到抗抑郁药的影响,这使得它们在了解抗抑郁药对野生动物的影响方面具有无价的价值。本文描述了一种系统性文献综述方案,以了解不同类别抗抑郁药的环境水平对水生软体动物的药物靶标特定影响。这项研究将提供关键的见解,以了解和描述与监管风险评估决策相关的抗抑郁药的影响,和/或指导未来的研究工作。
这些项目由 5 个 4-5 名学生组成的小组完成。学生必须从列表中选择他们想要使用哪种技术作为解决方案的一部分。例如,学生可以制定利用增强现实 (AR)、人工智能的解决方案,同时牢记上述策略。
由辐射引起的电子设备中的故障是过去几十年中最具挑战性的IS之一。如今,辐射效应不仅在太空环境中至关重要,而且在海平面上也至关重要,因为晶体管降尺度会影响综合电路的特征。 在敌对的环境中运行时,固态设备和集成电路可能会直接击中,电子,电子,质子,中子,重离子或α颗粒,从而导致其电性能改变。 这会使这些设备的可靠性和完整性处于危险之中,如果在安全关键应用中发生,也会导致灾难性后果。 国际标准IEC 61508设定了与安全相关系统必须满足的要求,以便根据其可靠性级别进行分类和认证。 对于涉及硬件设计的原因,可以通过将冗余概念应用于系统中的所有组件来进行缓解效果。 是通用硬件设备的处理器,在许多应用程序中都非常常见,有时在敌对的环境中运行。 这就是为什么可以将它们视为需要容忍的真正关键组件的原因。 在本论文项目中,介绍了指令解码的可容忍设计(ID)阶段的CV23E40P核心(这是RISC-V核心,实现RV32IMC仪器集)。 本论文中开发的工作包含在一个更广泛的项目中,该项目旨在使整个CV32E40P核心容错耐受。如今,辐射效应不仅在太空环境中至关重要,而且在海平面上也至关重要,因为晶体管降尺度会影响综合电路的特征。在敌对的环境中运行时,固态设备和集成电路可能会直接击中,电子,电子,质子,中子,重离子或α颗粒,从而导致其电性能改变。这会使这些设备的可靠性和完整性处于危险之中,如果在安全关键应用中发生,也会导致灾难性后果。国际标准IEC 61508设定了与安全相关系统必须满足的要求,以便根据其可靠性级别进行分类和认证。对于涉及硬件设计的原因,可以通过将冗余概念应用于系统中的所有组件来进行缓解效果。是通用硬件设备的处理器,在许多应用程序中都非常常见,有时在敌对的环境中运行。这就是为什么可以将它们视为需要容忍的真正关键组件的原因。在本论文项目中,介绍了指令解码的可容忍设计(ID)阶段的CV23E40P核心(这是RISC-V核心,实现RV32IMC仪器集)。本论文中开发的工作包含在一个更广泛的项目中,该项目旨在使整个CV32E40P核心容错耐受。提出的de符号使用误差校正代码(ECC)和N模块冗余(NMR)技术,这些技术可确保对单个事件效应(SEE)的容错容忍(SEE)对舞台中包含的所有组件。特别是,从硬件优化的角度来看,HSIAO代码是最适合的ECC之一。因此,它在设计中使用单个误差校正和双重错误检测(SECDED)功能。就NMR技术而言,出于论文的目的,一式三份(TMR)是硬件开销和错误公差水平之间的最佳权衡。实际上,TMR使用最小冗余水平来检测和纠正单个eRor,而无需暂停程序执行。然而,在最新的情况下,一些RISC-V内核已经使用这些技术来减轻瞬态错误。本文工作的创新方面是针对永久错误的特定部分解决方案的设计,除了针对瞬态的传统技术。特别是,从辐射角度来看,ID阶段中最关键的组件是寄存器文件,是最扩展的 -
1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34
