在2024年10月29日,欧盟(EU)对中国电池电动汽车(BEV)施加了17%至35.3%的反补偿职责,旨在抵消据称促进中国BEV出口到欧盟的补贴。该决定限制了一个为期一年的机构过程,并以欧盟内部分歧为标志。为了作出回应,中国以政治上敏感的农业食品贸易为目标,以迫使欧盟重新考虑其行动。尽管欧盟和中国之间正在进行的谈判探索了诸如最低价格或配额之类的妥协,但由于世界贸易组织的关注以及类似策略的过去失败,进步已经停滞不前。由于危及的基本利益,谈判是具有挑战性的,这些利益超越了电动汽车。欧盟试图通过降低与中国的经济关系构成的风险来增强其经济安全议程,同时还努力建立开放,更平衡的关系。对于中国来说,BEV向欧盟的出口对于其令人沮丧的经济环境中的增长至关重要,对于实现该国更广泛的发展目标至关重要。这一争议强调了越来越不确定的世界中经济安全与自由贸易要求之间的矛盾。
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2025.6.v1
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
首次尝试评估半导体天然橡胶的电荷传输特性。合成了四种不同比例的碘-橡胶复合材料,并通过电流密度-电压特性 (JV) 和阻抗谱测试了电荷传输。确定了最佳迁移率值的最佳掺杂比,并讨论了注入势垒高度对迁移率的影响。还尝试将态密度 (DOS) 与迁移率和掺杂比关联起来。在相同的环境和实验条件下,将半导体天然橡胶的传输特性与最流行的 p 型材料之一聚(3-己基噻吩-2,5-二基)(P3HT)进行了比较,以证明其作为经济高效且绿色的替代有机半导体的潜力。
[1] D. Aoki,A。Huxley,E。Desolution,D。Braithwaite,J。Flouquet,J。P. Brison,Eve,C。Paulsen,Nature 2001,413。[2] F. S. Bergeret, A. F. Volcov, K. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B.模式。物理。2005,77。[3] A. I. Buzdin,修订版。模式。物理。2005,77。[4] M. Eschrig,T。Löfwander,Nat。物理。2008,4,138。 [5]圣约翰,L。Xie,J。J。Wang A. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。2008,4,138。[5]圣约翰,L。Xie,J。J。WangA. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。A. Bernevig,A。Yazdani,Science 2017,358。[6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。R. [7] R. Cai,Ye,P.LV,Y。公社。2021,12。
量子比特读出是量子计算机中需要在单个量子比特上实现的三个基本量子操作之一,它具有一量子比特门和二量子比特门。获得具有合理保真度的量子计算结果至关重要。它对于容错量子计算和量子纠错 (QEC) 协议也至关重要,因为它允许见证和追溯计算流程中发生的错误 [1]。在半导体量子电路中,要求量子比特读出保真度高于 99%,速度低于每发一微秒,以保证 QEC 效率并确保具有竞争力的计算运行时间。此外,为了在运行算法时调整测量性能 [4],需要进行重复 [2] 或量子非破坏性测量 [3]。自旋读出操作的关键性能系数是保真度(或检测效率)、速度(必须快于弛豫时间 T1)以及能够执行读出所需的基本组件数量(储存器、量子点等)。直接测量量子点中捕获的单个电子自旋产生的磁场是一项非常具有挑战性的任务,2000 年初的一项“绝技”实验已经证明了这一点 [5]。除了复杂性之外,它还相当慢(ms),与量子计算不兼容。在半导体中,自旋读出是通过将自旋转换为电荷信息来执行的,并在接近 µs 的时间尺度上探测电子的电荷特性。
我们检查了Bogoliubov-de Gennes Hamiltonian及其对称性对称性,用于分时交换对称性破碎的三维Weyl超导体。在消失的配对电位的极限中,我们指定该哈密顿量在两组持续对称性下是不变的,即u(1)量规对称性和u(1)轴向对称性。尽管Bardeen-Cooper-Schrie Q er类型的配对会自发打破这两个对称性,但我们表明,Fulde-Ferrell-Larkin-ovchinnikov型配对的fulde-ferrell-ferrell-ferrell-larkin-ovchinnikov型配对会自发地破坏u(1)的对称性(然后通过众所周知的超级量表模式恢复了超级质量验证模式)。因此,在前一种情况下,系统中需要两种NAMBU-GOLDSTONE模式来恢复损坏的对称性。我们表明这两种模式之一是出现的伪标量相模式。我们还证明了这种相位模式会导致伪 - 甲壳虫效应。
在当今快速发展的技术环境中,半导体不仅是数字设备的基石,也是重塑世界的革命性技术的基石。它们对于开发和部署突破技术极限的创新至关重要。鉴于这一关键作用,著名的印度科学研究所 (IISc)、美国 Synopsys Inc. 和三星半导体印度研究中心 (SSIR) 之间的一项具有里程碑意义的合作催生了印度半导体劳动力发展计划 (ISWDP)。这一举措证明了培养能够跟上全球半导体需求的熟练劳动力的战略重要性。这种合作关系还为行业赞助的奖学金打开了大门。三星提供的择优奖学金旨在表彰和奖励参与者中的杰出人才,使该计划更具吸引力。但为什么这个项目至关重要,它如何将其相关性从印度边界扩展到全球舞台?访问 ISWDP (https://iisc-iswdp.org/about.php) 了解有关我们的使命和愿景的更多信息。
GaN 在家用电器中的应用势头强劲,未来四年将快速增长,预计 2023 年至 2029 年的复合年增长率将达到 121% [17]。在洗衣机、冰箱和其他家用电器等应用中采用 GaN 的驱动力之一是需要遵守能源法规并通过主要市场的能源标签进行差异化。能源标签根据家用电器的能耗对其进行评级,是消费者购买决策的关键因素。为了获得最高评级,制造商必须在保持高性能水平的同时降低能耗。一个潜在的解决方案是提高家用电器内部的电源转换效率。GaN 技术完全有能力在这一努力中发挥关键作用。GaN 提供的效率提升非常显著 [18]。例如,在 800 W 的应用中,GaN 可以实现 2% 的效率提升 [19],这可以帮助制造商获得令人垂涎的 A 级评级。这是通过 GaN 的更快切换能力实现的,因此,它更高效,并且因此满足了高效电机对降低损耗的性能需求。
