作为全固态电池的核心,固态电解质由于其相对于传统液态电解质的优势而受到充分重视。1–3 各类固态电解质中,聚合物电解质 4–7 由于其优异的机械性能和分子改性而成为研究的重点。8 但其室温离子电导率较差,严重限制了固态锂电池(SSLB)的使用。目前,已采用多种方法来提高固态聚合物电解质的离子电导率,如引入活性填料和惰性填料 9。锂盐,例如 LiTFSI、g-LiAlO 2、10、11 和 LiN 3、12,通常用作活性填料,因为它们可以直接为聚合物体系提供 Li+。惰性填料如 TiO2(参考文献 13)、ZrO2 14 和 Al2O3(参考文献 15,16)可以通过降低聚合物结晶度或将聚合物链与 Li+偶联来提高体系的离子电导率。16,17
随着 5G、人工智能、物联网等技术的快速发展,微电子设备的工作温度不断升高,对导热和电绝缘材料的需求显著增加[1-4]。这主要是因为微电子设备运行时芯片产生的热量由于一层热界面材料(TIM)而不能迅速传递到冷却设备。TIM 的主要作用是填充微电子设备与散热器翅片之间的缝隙,从而降低界面热阻[5]。环氧树脂或硅橡胶等聚合物因具有优异的黏附性、热稳定性和电绝缘性,常用作 TIM[6,7]。然而,它们的 TC 值较低(低于 0.3 W/m·K),不能满足微电子设备的需求。因此,迫切需要具有优异平面热导率的TIM,它能及时将热量传递至散热片,进而将热量传输到设备外部。通过加入陶瓷填料,如AlN[8-10]、Al2O3[11-13]、Si3N4[14]和BN[15,16],复合策略被认为是提高热导率的最有效方法。特别是对于具有与石墨类似的层状结构的BN,由于其优异的热导率(平面方向约600W/m·K)和宽的带隙[17-20],它引起了人们的极大兴趣。因此,将BN加入到聚合物中对提高热导率具有重要意义。然而,通过传统共混方法制备的BN基复合材料的平面热导率远低于平面取向的。在这方面,已经开发出一些策略来增强聚合物复合材料的平面导热性。一种策略是构建三维网络骨架。在这种结构中,
热电材料通过Seebeck效果提供了一种简单的解决方案,可从各种热源进行直接热能电源。在全球范围内,目前约有2/3的主要能量被浪费为热量。[1]因此,存在着很大的作用,可以提高许多发电和工业过程的能源效率。当前的热材料远离理论效率极限远。正在进行的正在进行的研究工作,以提高效率并在废热收集中实现更广泛的应用。[2–4]为此目的探索的一类材料是有机半导体(OSC)。热电材料的效率取决于功绩ZT = S2σT /(κE +κpH)的无量纲图,其中S [V K –1]表示Seebeck系数; σ[S M –1],电导率; κE和κpH [W M –1 K –1],电子和
导电原子力显微镜(C-AFM)是通过在导电探针和样品之间应用一定的偏置电压并获得样品的电气信息,是在微电子分析中使用的强大工具。在这项工作中,通过C-AFM获得具有不同分布的Lambda DNA(λDNA)分子的表面形态信息和当前图像。将1 ng/μL和10 ng/μL的DNA溶液滴入云母上,以制作随机分布的DNA和DNA网络样品,然后将另一个1 ng/μl的DNA样品放入DC电场中,电压为2 V,然后将其干燥以拉伸DNA样品。结果表明,流过DNA网络的电流显着高于实验中DNA的拉伸和随机分布。通过将C-AFM的偏置电压从-9 V到9 V获得DNA网络的I-V曲线。研究了在不同的pH值下流过拉伸DNA的电流。当pH为7时,电流最小,并且随着溶液变成酸性或碱性,电流逐渐增加。
这些材料的厚度[13,14]、孔隙率[15]、多晶性[16]和生长形貌都会影响关键的设计参数,如质量密度(ρ)和热导率(κ)。例如,质量密度是爆炸材料爆轰性能的主要参数,因为它与由此产生的传播速度成正比。[17,18]另一方面,热导率可以为药物成分的无定形稳定性提供关键见解,这最终决定了它们的生物利用度。[3,19,20]对于薄膜热障,质量密度和热导率都起着重要作用,因为它们通常是被动的并受到瞬态热载荷。 [8] 考虑到工程表面的状况、[12] 微观缺陷、[21] 通往非晶态的新途径[20] 和新型沉积技术[22] 预计将共同作用以控制有机薄膜的微观结构,需要对热物理性质进行局部测量,以指导其合成和生长。然而,对有机薄膜而言,质量密度的局部测量是一个巨大的挑战。例如,掠入射 X 射线反射、光谱椭圆偏振术和横截面扫描电子显微镜要么需要超光滑表面[23]、有机物透明的波长[24],要么需要可能损坏熔点低的样品的离子暴露。[25,26] 另一方面,重量法测量质量和体积会得出整个样本的平均密度,而没有关于微观结构的信息。显然,需要一种能够非破坏性地探测有机薄膜局部质量密度变化的测量技术。频域热反射 (FDTR) 是一种成熟的泵探测测量技术,可用于测定块体和薄膜材料的热性质,探测尺寸与激光光斑尺寸相当(通常约为 10 μ m)。[27–29] 使用 FDTR,可以定期提取材料的热导率和体积热容量 (ρcp)。然后可以使用测得的体积热容量和体积比热容 (cp) 的假设来确定质量密度。为了测量有机薄膜的质量密度,
从图 8A 的 SEM 结果中还可以观察到,纯 EP 树脂的断口形貌具有非常光滑的横截面和光滑的结构,呈现出明显的河流状形貌,这是典型的脆性断裂特征,表明纯 EP 树脂表现出有限的力学性能。然而,当添加适当含量的 S-TiO 2 (4.0 wt%) 时,EP 树脂的
cs 2 agbibr 6(CABB)被认为是铅卤化物钙钛矿的一种有希望的无毒替代品。但是,低电荷载体收集效率仍然是将该材料纳入光电应用中的障碍。在这项工作中,我们使用稳态和瞬态吸收和反射光谱研究CABB薄膜的光电特性。我们发现,由于薄膜内部多次反射,这种薄膜上的光学测量结果被扭曲。此外,我们使用微秒瞬时吸收光谱和时间分辨的微波电导率测量来讨论这些薄膜电导率损失背后的途径。我们证明,载体损失和定位的综合作用导致CABB薄膜的电导率损失。此外,我们发现电荷载体扩散长度和晶粒尺寸的数量级相同。这表明该材料的表面是电荷载体损失的重要原因。
100 247.2 217.9 205.9 38.5 224.5 199.8 260 76.5 48.6 46.5 10.3 49.7 45.3 110 215.4 178.6 169.1 32.8 183.7 164.3 270 73.6 46.5 44.5 9.9 47.6 43.4 120 190.7 150.8 143.1 28.6 155.0 139.1 280 70.9 44.6 42.6 9.5 45.6 41.6 130 171.1 130.4 124 25.3 133.9 120.6 290 68.4 42.8 40.9 9.1 43.8 39.9 140 155.4 114.9 109.4 22.7 117.9 106.4 300 66.1 41.2 39.4 8.8 42.1 38.4 150 142.3 102.7 97.9 20.6 105.3 95.2 310 63.9 39.7 38 8.5 40.5 37 160 131.5 92.9 88.7 18.8 95.3 86.2 320 61.9 38.3 36.6 8.2 39.1 35.7 170 122.2 82.9 81.1 17.4 87.0 78.9 330 60.1 37 35.4 7.9 37.8 34.5 180 114.3 78.2 74.7 16.1 80.1 72.7 340 58.3 35.8 34.3 7.7 36.5 33.4 190 107.4 72.5 69.4 15.1 74.3 67.5 350 56.7 34.6 33.2 7.4 35.4 32.3 200 101.4 67.7 64.4 14.1 69.3 63 360 55.1 33.6 32.2 7.2 34.3 31.3 210 96.1 63.4 60.4 13.3 64.9 59.1 370 53.6 32.6 31.3 7.0 33.3 30.4 220 91.3 59.8 57 12.6 61.2 55.6 380 52.3 31.7 30.4 6.8 32.4 29.6 230 87 56.5 53.9 11.9 57.8 52.6 390 51 30.8 29.5 6.6 31.5 28.7 240 83.2 53.6 51.1 11.3 54.8 49.9 400 49.7 30 28.8 6.4 30.6 28 250 79.7 51 48.7 10.8 52.2 47.5
导电墨水广泛用于各个领域,尤其是在电子印刷行业中。导电墨水更加灵活,更小,并且具有多功能功能。本研究旨在研究拉伸应力下导电墨水的电阻率。将碳导电墨水印在热塑性聚氨酯(TPU)上,并在120°C的烤箱中固化30分钟。将导电墨水夹在拉伸设备上,并以不同的伸长值拉伸。电阻率是通过多米测量的,板电阻是通过四点探针测量的。在40 mm的导电墨水中,初始电阻为0.562kΩ,当将其伸展到其初始长度的18%时,它变为1.217kΩ。由于拉伸应力下导电墨水表面的缺陷,导电墨水的电阻也增加了。在40毫米的导电墨水中,板电阻在初始状态下为793.17 r/sq,并在伸展至其初始长度的18%时变为3059.37 r/sq。通过比较导电墨水的不同长度,可以在5.6mm的伸长率下观察到40 mm导电墨水的裂纹点,应变水平为0.14。60mm导电墨水的裂纹点为9.6mm,应变水平为0.16。不同导电墨水之间的开裂点的应变水平非常闭合。当应变水平达到0.15左右时,导电墨水开始破裂。总而言之,在拉伸应力下,板电阻和电阻率正在增加,这意味着电导率下降。
摘要:金属卤化物钙钛矿的有利的光电特性已用于X射线和γ射线检测,太阳能和光电子。较大的电子迁移率,减少电子孔对的重组损失以及电离照射时高灵敏度的高灵敏度引起了人们对技术实现的极大关注。尽管如此,就长期以来的不稳定性和降解问题而言,混合钙化物的公认混合离子电子运输特性具有严重的局限性。几种影响归因于移动离子的存在,例如内部电气场对偏置和固有移动缺陷和电极材料之间的化学相互作用时的屏蔽和化学相互作用。离子孔子模型构成了知识的基本和平,可以进一步发展到卤化物钙钛矿装置物理和操作模式。在这里,独立监测碘化甲基铵钙钛矿的铅甲基铵钙钛矿的离子电流和电子阻抗,显示出自一致的模式。我们的发现指向离子和电子特性的耦合是由移动的移动掺杂剂的移动离子引起的动态掺杂效应。在整体内部分布的函数中,电子掺杂量会变化,然后在电子电导率中产生特定的时间依赖性,该电子电导率重现了T型类型的时间模式,这是一个明显的di ti ti ti ti tii ti timusive of US运输。基于较厚的钙钛矿层的技术实现将从这一基本信息中受益,就当前的稳定而言,这是有益的。在d离子〜10-8 cm 2 s-1范围内的碘相关缺陷差值的值,对应于约10-6 cm 2 v-1 s-1的离子迁移率。关键字:钙钛矿,离子迁移,电子电导率,动态掺杂,X射线检测■简介