导电介质,用于传输电荷。因此,总而言之,电场强度必须超过绝缘材料的击穿极限才能发生放电。缩小后,这意味着只要超过最大局部固有场强并且有起始电子,绝缘体的部分区域也可能会发生放电。因此,在整个绝缘体的一部分中发生的放电称为局部放电。尽管局部受限,但这些以及完全击穿都可能通过热量发射、振动、光子或化学方式损坏绝缘体。
电介质中的电偏振,电位移电流;麦克斯韦电场方程的简介,电流密度的连续性方程,修改磁场卷曲的方程式以满足连续性方程。麦克斯韦在真空和非导电介质中的方程,电磁场中的能量,能量流和poynting载体,示例,波浪方程,真空中的波平方,平面电磁波及其横向性质,偏振,偏振,电磁波和磁场之间的电磁波和磁场之间的关系。
并倾向于在特定电解质溶液或其他环境中独立腐蚀。这种溶解或腐蚀趋势与金属在导电介质中的电位有关。电化学腐蚀本质上受组成电化学对的金属在电化学序列中的相对位置的影响。序列中位置接近的金属将具有更接近的电位,而位置差异越大,电位差就越大。使用表 I 作为确定不同金属组合的相对兼容性的指南。海水中金属的电化学序列如表 II 所示。兼容性并不表示完全没有电化学作用。电化学效应,即阳极的腐蚀程度,受金属在电化学序列中的差异、动力学因素(例如极化效应)、电解环境和金属的物理排列的影响。有关更多信息,请参阅附录 B。 4. 一般要求(不适用) 5. 详细要求
I.引言由于技术革命,当今的生活与过去不同。开发解决方案以促进日常实践和工作变得更加重要。最近几个月,全世界面对了Covid-19的大流行,这改变了应对生活的许多领域的方式。受影响最大的领域之一是学术界,由于社会疏远以减少疾病的传播,该学术界利用远程教育。远程教育有一些优势和缺点。最重要的缺点之一是教师无法确定学生的专心水平。因此,本文提出了一种方法,使老师给学生的关注和互动水平留下了印象。这种方法基于阅读脑电图(EEG)信号,通过这些浪潮,老师可以印象深刻。脑电图是一种读取由大脑结构产生的头皮上的电活动的方法。要阅读脑电图,我们使用金属电极和导电介质。大多数情况下,脑电图测量了大脑皮质中神经元神经元的突触激发期间的电流流量[1]。脑电图的历史可以追溯到一个多世纪。田间的发展经过三个主要阶段。第一个
电磁兼容性 (EMC) 工程师使用“噪声”的概念来描述降低电子设备性能的有害信号。在航空电子应用中,外部和内部 EMI 噪声源都可能干扰敏感的导航和战术设备,甚至可能破坏飞机的控制。航空母舰的大型电子设备舱可能会造成干扰,导致飞机起飞或降落失败。影响卫星传输的 EMI 可能导致战场上的通信故障。出于这些原因,EMI 被认为是一个严重的问题,并且已经开发出许多技术和技巧来确保数据传输系统中的电磁兼容性 (EMC) - 从船上到海底,从航空电子设备到太空,从航空母舰到微型无人机。 EMI 源 EMI“噪声”源可分为三类:1) 由物理系统内的随机波动引起的固有噪声,例如热噪声和散粒噪声;2) 来自电机、开关、电源、数字电子设备和无线电发射器的人为噪声;3) 来自自然干扰的噪声,例如静电放电 (ESD)、闪电和太阳黑子。 固有噪声源可能非常微妙,通常无法识别。所有电气系统都是固有噪声的潜在来源,包括便携式收音机、MP3 播放器、手机等常见设备。这些设备只要开启就会造成干扰。这是因为导电介质或半导体器件中的电子在受到外部电压激发时会产生电流。当外部施加的电压停止时,电子会继续移动,随机地与其他电子和周围材料相互作用。即使没有电流,这种随机电子运动也会在导电介质中产生噪声。人为 为了保护航空电子系统免受人为噪音的影响,商业航班上完全禁止使用故意的射频 (RF) 发射器,如手机、蓝牙配件、CB 无线电、遥控玩具和对讲机。笔记本电脑、手持式扫描仪和游戏机虽然不是故意的发射器,但会产生 1 MHz 范围内的信号,从而影响航空电子设备的性能。导航电缆和其他关键线路沿着机身铺设,乘客坐在几英尺远的地方。由于构成客舱内部的薄介电材料片(通常是玻璃纤维)根本不提供任何屏蔽;而且由于商用客机包含长达 150 英里的电线,这些电线可能像一个巨大的天线一样,因此乘客必须注意有关使用潜在破坏性电子设备的规定。显然,这些内部 EMI 源对飞机来说非常危险,因为它们离它们可能影响的系统非常近。但外部来源,地面上的无线电和雷达发射器,或过往军用飞机的雷达,驾驶舱航空电子设备容易受到多种 EMI 源的影响,包括 iPhone 和其他 PED 的人为干扰,由于这些设备的高功率和高频率,干扰可能更大。如果许多外部和内部 EMI 源还不够令人担忧,铝制机身本身在某些情况下可以充当 1 到 10 MHz 范围内的谐振腔。机身的行为与卫星天线非常相似,可以通过集中人为和自然发生的瞬态信号并将干扰广播到附近的设备来加剧内部和外部 EMI 的影响。一家大型飞机制造商最近发布的一份报告说明了人们对乘客携带的便携式电子设备 (PED) 的持续担忧。商用飞机上这些设备的数量激增,尤其是随着 Apple iPad 等新型笔记本电脑设备的出现。使用 PED 会产生
锂离子电池 (LIB) 在离子导电介质(即电解质)中通过 Li + 在阴极和阳极之间穿梭来存储/释放能量。[3] 由于 Li 的摩尔质量低(6.9)且 Li + 的离子半径小(0.76 ˚A),LIB 在各种储能系统中的 Ragone 图中表现出最佳能量密度。[4-6] 尽管如此,其他储能系统,包括超级电容器[7]、锌离子电池[8,9]、固态电池[10]、碱性金属电池[11]、锂硫电池[12] 等,在实现 LIB 方面各有优势,可实现高倍率能力、长循环寿命、通过水系/固态电解质提高安全性,并可能通过金属阳极和硫正极提高能量密度。与LIBs类似,钠离子电池(SIBs)也是由安装在集流体上的阴极和阳极组成,中间由Na+导电电解质(有时还有绝缘隔膜)隔开。[13]SIB的电化学机理也是基于Na+在阴极和阳极之间的穿梭(图1a)。尽管与LIBs有许多相似之处,但是较大的离子半径(Na+:1.02˚A)和较高的Na摩尔质量(23)将导致SIBs的电化学动力学受阻和容量受损。此外,钠的较高标准氧化还原电位(Na/Na+−2.74V vs Li/Li+−3.04V)损害了实现的能量密度。 [2,14 – 16] 因此,Na 的理论重量/体积容量(1166 mAh g −1;1131 mAh cm −3)低于 Li(3861 mAh g −1;2062 mAh cm −3)。[2] 尽管如此,由于 SIBs 的丰度更高(Na 2.36 wt.% vs Li 0.0017 wt.%)且在地壳中分布均匀,原材料成本低得多,因此 SIBs 显示出作为 LIBs 可持续且具有成本效益的替代品的巨大潜力。 [6,17] 相反的是,由于锂和钴的储量有限且分布集中在政治敏感地区,预测供应风险已引起锂原材料(如 Li2CO3)成本波动,并显著提高了 LIB 制造成本。[13,18–23] 此外,Na+ 所需能量低于 Li+