通过控制 SiC 纳米粒子的选择性定位和表面改性实现聚苯乙烯/聚偏氟乙烯共混物的导电性和阻燃性,ACS Appl. Mater. Interfaces 5 (2013) 6915–6924。11. QH Weng、XB Wang、X. Wang、Y. Bando、D. Golberg,功能化六方硼
我们的尖端技术在全球多个领域得到应用。京瓷提供 200 多种陶瓷材料,旨在满足个性化需求。高性能陶瓷是经过精心设计的材料,具有天然材料所不具备的独特性能。这些性能(例如导电性和耐热性)使它们能够承受其他材料无法承受的条件。通过这种方式,我们的技术陶瓷有助于将不可能变为可能。
本工作采用定向冷冻干燥技术制备具有定向多孔结构的三维高导电纤维素纳米纤维 (CNF)/Ti 3 C 2 T x MXene 气凝胶 (CTA),然后通过热退火 CTA、随后的真空辅助浸渍和固化方法制备热退火 CTA (TCTA)/环氧树脂纳米复合材料。结果表明,TCTA/环氧树脂纳米复合材料具有三维高导电网络,超低渗透阈值为 0.20 vol% Ti 3 C 2 T x 。当 Ti3C2Tx 的体积分数为 1.38vol% 时,TCTA/环氧纳米复合材料的电导率(σ)、电磁干扰屏蔽效果(EMI SE)和 SE 除以厚度(SE/d)值分别达到 1672 S m -1、74 dB 和 37 dB mm -1,与之前报道的相同填料含量的聚合物纳米复合材料相比几乎是最高值。此外,与不含 Ti3C2Tx 的样品相比,TCTA/环氧纳米复合材料的储能模量和耐热指数分别提高到 9792.5 MPa 和 310.7℃,提高了 62% 和 6.9℃,表现出优异的力学性能和热稳定性。所制备的轻质、易于加工、可成型的 TCTA/环氧纳米复合材料具有优异的 EMI SE 值、优异的机械性能和热稳定性,极大地拓宽了 MXene 基聚合物复合材料在 EMI 屏蔽领域的应用。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
当盐、湿气或腐蚀性液体(如特种液压油)与连接件和电缆接触时,就会产生腐蚀。产生的氧化物会降低导电性,从而增加导电连接器的电阻。因此,如果系统发生故障,安全断路器将无法运行或运行缓慢,甚至可能导致火灾。腐蚀的结构连接在遭受雷击时会造成巨大损坏。不幸的是,这种腐蚀形式并不总是肉眼可见的。
LTCC(低温共烧陶瓷)是一种多层基板技术,具有出色的射频和微波性能特征。其低烧结温度(约 900°C)允许与银和金等高导电性金属共烧。LTCC 基板具有出色的机械和电气性能,再加上嵌入无源元件的能力,可为高频应用提供卓越的射频性能和设备小型化。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
印度空间研究组织 (ISRO) 的空间应用中心 (SAC) 已开发出用于空间硬件的电镀工艺,以实现所需的表面工程特性,如 EMI/EMC、电导率、非导电性、防腐、可焊性、发射率,并为热控制涂层奠定良好的基础。这些工艺符合太空使用要求,公差非常严格,并经过各种测试,如目视检查、附着力测试、环境测试和符合 ASTM 和 MIL 标准的工程特性特定测试。