许多研究表明,脉冲激光器和聚焦X射线以类似于重离子的方式产生SEE的能力,同时提供了设备内电荷产生的精致空间和时间控制[9-11]。三种测试方法的电荷产生曲线在轴向和径向尺寸中有所不同。重离子通常在大多数设备尺寸的相关距离上沿轴向方向具有线性电荷产生曲线,其特征是线性能传递(LET)。典型的集中飞秒脉冲激光系统使用光学器件,可产生由高斯两光子吸收(TPA)描述的电荷产生曲线[5,12-15]。我们注意到,最近,美国已经开发了一种光学配置。海军研究实验室(NRL),该实验室使用准贝斯梁来产生扩展的电荷产生曲线[16],这在这项工作中未评估。使用聚焦的皮秒脉冲X射线的新兴技术产生了由Beer定律描述的电荷产生曲线,并随着穿透深度而呈指数降低[17]。这些
什么是核医学和分子成像? 一个多世纪前,X 射线的发现使医生和科学家能够看到活体内部,从而深刻改变了医学实践。如今,现代医学正在经历另一场重大变革,核医学和分子成像处于其前沿,深入探索人体内部以揭示其内部运作。与主要产生结构图片的传统成像研究不同,核医学和分子成像可以直观地显示人体的运作方式以及细胞和分子水平上正在发生的事情。诊断成像的发展——从产生解剖图片到成像和测量人体的生理过程——对当今医学的各个方面都至关重要,从诊断早期疾病、开发更有效的治疗方法到个性化医疗。借助核医学和分子成像,科学家和医疗保健提供者可以: • 更好地了解疾病的途径 • 快速评估新药 • 改进治疗选择 • 监测患者对治疗的反应 • 寻找识别患病风险个体的新方法。
图1。ndnio 2中的电荷顺序[24]:(a)从钙钛矿Ndnio 3(灰色)到Infinite-Layer ndnio 2(红色)的还原途径的示意图,具有各种中间状态(蓝色); (b) - (d)样品J的茎结果,可以在面板(d)中区分根尖氧空位,从而导致Q//≈(1/3,0)在傅立叶变换图像(b)中的超晶格峰; (e)在Q //≈(1/3,0)围绕Ni L 3边缘处的弹性RXS测量,实体和虚线分别是具有σ和π偏振入射X射线的数据; (f)在ND M 5边的RXS测量; (g),(h)带有样品C和D的固定波形的RXS信号的能量依赖性,阴影区域表示标称电荷顺序贡献。黑色和红色箭头突出显示了Ni 3D-RE 5D杂交峰和Ni L 3主共振,样品C的中间状态比样品D较大,从而导致超晶格峰更强。
X射线成像是一种利用X射线的技术,可以通过平面X射线探测器揭示物质的内部结构,具有明显的先进的科学研究和现代社会。通常,间接平面X射线检测器通过闪烁器将X射线转换为可见的光子,而直接平面X射线检测器将X射线转换为通过半导体转换为电荷载体。随着对X射线成像应用的不断增长的需求,达到较低的辐射剂量和较高的空间分辨率是下一代平面X射线探测器的主要目标。尤其是,直接平面X射线探测器具有高空间分辨率,因为电荷载体沿着电场移动,几乎没有信号串扰,这对于此野心是最佳的。然而,对符合X射线检测的所有先决条件的出色半导体的追求,并且可以很容易地与Planar X射线检测器的读取电子设备集成在一起仍然是一项极具挑战性的努力。
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
计算机横向断层扫描(CT扫描)。使用传统的X射线,三维体的二维投影出现在X射线膜上,因为重叠的结构很难彼此区分,而计算机化的跨轴层造影或CT,另一方面,CT(CT,CT,SCAN)提供了大脑的三维表示。简要地,该技术如下。X射线的狭窄光束从头部的一侧传递,而间隔组织未吸收的辐射量被辐射探测器吸收。X射线管在患者的头部横向移动,并在160个均等位置记录了检测到的辐射量。这些数据存储在计算机中。然后将X射线梁旋转1度,然后重复该过程。总共将梁旋转至180度。所有预测完成后,将由计算机处理结果X射线总和(160*180)。然后由计算机打印出患者的头部横截面中的患者头部。通常,将八个左右的横截面打印出来,每个截面都与头部的另一个平面相对应。因此,CT扫描可以在大约25分钟内对患者的大脑进行简单的无创检查。
由于精确肿瘤学的出现,癌症治疗的治疗景观正在迅速发展。发现新型可药物目标和更可靠的生物标志物是朝着个性化癌症治疗策略的主要目标。在人体内的前列腺上皮中高表达,瞬时受体潜在的亚家族M成员8(TRPM8)水平上升了原发性和激素幼稚的转移性前列腺癌(PCA)病变,这使该通道成为一个有趣的分子靶标原型。最近,通过将多学科的方法结合到体外遗传平台,我们证明了有效的TRPM8激动剂与X射线的组合可在原发性病变的辐射前身体恶化和恶性模型中诱导大量的凋亡反应。也,TRPM8激活增强了多西他赛或恩扎拉氨酰胺在根除激素幼稚的转移性PCA细胞中的功效。总体而言,我们的发现为TRPM8的临床前和临床研究提供了一个坚实的理由,这是PCA未来精确肿瘤学方法的宝贵目标。
在本研究中,通过使用U.P. Gorakhpur的Sarua Lake Campiorganj的多线性尺寸,揭示了化石的形态特征。印度。 在2023年9月至2024年3月之间,在当地渔夫的帮助下,在当地渔夫的帮助下,共收集了42个异源化石。。印度。在2023年9月至2024年3月之间,在当地渔夫的帮助下,在当地渔夫的帮助下,共收集了42个异源化石。对于每个人,借助放大镜,对鳍射线的总数进行计数。通过使用数字平衡来测量体重,并分别使用幻灯片卡尺达到最接近的0.01 gm和0.01 cm的精度来测量各种长度。体重在7.5至86.7 gm之间,总长度在109.0至130.1毫米之间。杂型化石的鳍配方是:背,d.6-7;胸部,PC,1/7;骨盆,PV。6-7;肛门,A.64-65;和Caudal,C。14-17。当前研究的发现对于印度美国美国戈拉赫布尔的萨鲁阿湖,坎卢阿湖,坎卢亚湖,萨鲁亚湖的识别和库存管理非常有效。
锥形束计算机断层扫描(CBCT)和全景X射线是牙科医疗保健中最常用的成像方式。CBCT可以产生患者头部的三维视图,从而为临床医生提供更好的诊断能力,而全景X射线可以在单个图像中捕获整个上颌面区域。如果CBCT已经可用,则可以合成全景X射线,从而避免立即进行额外的扫描和额外的辐射暴露。现有方法着重于描绘沿该拱门的近似牙齿拱门并创建正交的投影。但是,这种牙齿拱门提取没有黄金标准,并且此选择会影响合成X射线的质量。为了避免此类问题,我们提出了一种新的方法,用于使用模拟的投影几何形状和动态旋转中心合成不同头部CBCT的全景X射线。我们的方法有效地从CBCT中综合了全景,即使是牙齿缺失或不存在的患者,并且在存在严重的金属植入物的情况下。我们的结果表明,这种方法可以生成高质量的全景图像,而与CBCT扫描仪几何形状无关。
葡萄干化字母卷。21,编号6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。 伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。具有不同组合物的玻璃样品是通过标准方法制备的。样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。分析了所获得的样品的光学特性。e OPT值的下降导致玻璃的折射率(n)值更高。但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。收到2024年3月2日; 2024年6月12日接受)关键字:光学和辐射屏蔽特性,吸收光谱拟合(ASF),辐射参数,光带隙,折射率1。介绍多年来,这些技术的进步无疑有助于人类在节省时间,精力和成本的同时完成众多任务的能力。但是,这种进步导致了对人类的健康危害。实际上,辐射的用途现在广泛用于各种目的,例如环境保护,增长促进,粮食生产,研究和医疗保健[1]。在各种应用中,例如伽马射线和X射线的医学成像或工业过程,选择合适的安全材料以保护有害辐射并确保辐射源的安全至关重要。[2]。尽管它们有许多缺点,但使用混凝土以屏蔽辐射的目的,各种低成本的常见实践。因为它们能够被塑造成不同的几何形状[3]。长时间暴露于核辐射会导致裂缝,降低密度[4]。除此之外,混凝土材料的强度可能会受到其中被困在其中的水量以及任何化学破坏构成重大挑战的影响,因为工人无法到达此类结构的内部。玻璃作为辐射屏蔽的可能材料,因为它们能够吸收γ射线和中子及其高可见性[5]。玻璃材料已被几位作者证明是有效的辐射罩。材料预防辐射的能力取决于几个因素,包括(LAC和MAC),原子数和电子密度,(MFP)等。准确评估这些参数至关重要。[6,7]。对最近文献的全面调查表明,玻璃的屏蔽和放射性特性一直是激烈调查的主题。El-Mallawany等人进行的一项研究; [8]专注于Tellurite Glass作为屏蔽的能力 *通讯作者: