摘要 现代外科手术中麻醉是必不可少的,以确保患者安全并成功康复。麻醉深度 (DoA) 评估是一个重要且正在进行的研究领域,旨在确保患者在手术期间和术后的稳定性。这项研究通过开发一种基于脑电图 (EEG) 信号分析的新指数来解决当前 DoA 指数的局限性。采用经验小波变换 (EWT) 方法提取小波系数,然后进行统计分析。从小波系数中提取特征谱熵和二阶差异图。这些特征用于训练新指数 SSE DoA,利用具有线性核函数的支持向量机 (SVM)。新指数准确评估 DoA 以说明不同麻醉阶段之间的过渡。对九名患者和另外四名信号质量低的患者进行了测试。在我们测试的 9 名患者中,观察到与双谱 (BIS) 指数的平均相关性为 0.834。DoA 阶段转换分析显示 Choen's Kappa 为 0.809,表明一致性较高。关键词:麻醉深度、统计模型、经验小波变换、二阶差分图
摘要:脑电图 (EEG) 信号很容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医疗诊断的错误解读。本文的主要目标是在不扭曲 EEG 所含信息的情况下去除肌肉伪影。首次提出了一种新的多阶段 EEG 去噪方法,其中小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别伪影 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行校正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。所提出的系统首先在模拟脑电图数据上进行验证,然后在真实脑电图数据上进行测试。所提出的方法在真实脑电图数据上实现了 2.9684 ± 0.7045 的平均互信息 (MI)。结果表明,所提出的系统优于最近开发的具有更高平均 MI 的去噪技术,这表明所提出的方法在重建质量方面更佳并且是全自动的。
信号在自然界和(人造)技术中都至关重要,因为它们使通信成为可能 1、2(图 1)。从数学上讲,信号是一维(例如语音)或多维(例如二维 (2D) 图像)的函数,它携带有关物理系统 3 的属性(例如状态)的信息。源通过信道将信号传输到接收器,接收器再将信号传送到目的地。例如,大脑通过声带通过空气发送口头信息,听者的耳朵接收该信息,然后将其传送到听者的大脑。当相同的信息通过智能手机传输时,空气会通过技术链进行补充,而其余部分则保持不变。信号在社会中无处不在 3、4(图 1)。无论信号来自何处,都需要进行处理才能生成、转换、提取和解释其所携带的信息 3。一种广泛用于解释(即提取和分析)信号中重复模式的方法是傅里叶变换 (FT) 3、4。FT 将时间函数转换为频率的复值函数,表示频率的幅度。FT 假设信号是平稳的。换句话说,它是一个随机过程,其中边际和联合密度函数不依赖于时间原点的选择 2。然而,在现实世界的实践中,这一假设经常被违反。因此,FT 无法可靠地处理现实世界的非平稳信号 5。为了避免非平稳性问题,存在先进的算法,这些算法基于信号分解为在时间和频率上很好地局部化(或分箱)的基本信号来分析信号 4。这些算法包括短期傅里叶变换 (STFT),也称为 Gabor 变换,和小波变换 (WT) 6。 STFT 与 FT 非常相似,但它使用窗口函数和在时间和频率上都局部化的短小波(而不是纯波)来提取时间和频谱信息。STFT 的缺点是它使用固定宽度的窗口函数,因此频率分析仅限于波长接近窗口宽度 7 的频率。此外,将信号切成短的固定宽度窗口会扰乱信号的属性。因此,频率分析会受到影响 8 。
脑瘤是脑内一团异常细胞。脑瘤可能是良性的(非癌性的)或恶性的(癌性的)。放射科医生对脑瘤的传统诊断是通过检查磁共振成像 (MRI) 生成的一组图像来完成的。为了帮助放射科医生正确分类 MRI 图像,已经开发了许多计算机辅助检测 (CAD) 系统。卷积神经网络 (CNN) 已广泛应用于医学图像的分类。本文介绍了一种用于对 MRI 图像中的脑瘤进行分类的新型 CAD 技术。所提出的系统利用离散小波变换 (DWT) 表现出的强能量紧凑性从脑 MRI 图像中提取特征。然后将小波特征应用于 CNN 以对输入的 MRI 图像进行分类。实验结果表明,所提出的方法优于其他常用方法,总体准确率达到 99.3%。
随着技术进步的快速进步,对高处理和存储能力的需求已大大增加。因此,发现操纵和转换信息的新方法是必要的。一种潜在的解决方案是量子信息处理,它大大减少了存储的数据的量,操作数量以及经典工具(例如小波变换(WT))的复杂性。wt是许多领域的主要工具,例如加密,信号编码,水印,组合,掉头和信息检索。其经典相关性推动其在量子水平上的进展,从而提高了对一,二维和三维量子小波的转换的计算效率。但是,常规的,实价的WT不适用于无损应用,并且在计算上很复杂。整数到整数WT(IWT)是另一种转换,将整数映射到整数,它使用起重方案来执行信号分解分析。此方案降低了计算成本,允许对实价WT进行实践无损应用,并产生新的小波家族。到目前为止,整数版本(Q-IWT)尚无定义的QWT定义,这在量子信息处理中可能很有价值。因此,我们为HAAR,DAUBECHIES和CDF核的一维整数小波转换提出了一种量子方法,包括信号分解和无损压缩的量子算法。此外,我们将使用IBM的仿真环境作为分析和验证的手段。我们将使用复杂性和数学分析,性能,挠性,信号恢复,熵和噪声添加指标评估所提出的转换和压缩应用。
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。
数据科学中的一个至关重要的问题是将高维数据中的有意义的信息提取到一个低维功能集中,这些特征可以在不同级别上表示原始数据。小波分析是将时间序列信号分解为具有详细时间分辨率的几个级别的普遍方法。但是,获得的小波在每个样本中以及一个人群中的不同样本之间相互交织并过度代表。在这里,使用模拟尖峰,实验性尖峰,钙成像信号和人类电视学信号的神经科学数据,我们在小波之间利用条件互信息进行特征选择。验证了所选特征的有意义,以高精度地解码刺激或条件,但仅使用一小部分特征。这些结果提供了一种新的小波分析方法,用于提取时空神经数据动力学的基本特征,然后可以通过代表性特征支持机器学习的新型模型设计。
在研究问题和相关数据集之后,特征提取是机器学习和数据科学管道的最重要组成部分。小波散射变换(WST)是最近开发的基于知识的特征提取技术,在结构上像卷积神经网络(CNN)一样。它保存在高频中,对信号变形不敏感,并产生分类任务中通常需要的实价信号的较低差异。借助来自公共可用UCI数据库的数据,我们研究了从多通道脑电图(EEG)信号中提取的基于WST的功能的能力,以区分20名酗酒和20个男性健康的男性的男性受试者的1.0-S EEG记录。使用记录的10倍交叉验证,我们发现输入到支持向量机(SVM)分类器的基于WST的特征能够正确对所有酒精和正常EEG记录进行正确分类。使用1D CNN实现了类似的性能。相比之下,最高的独立主题平均值10倍跨验证性能是通过馈送到线性判别(LDA)分类器的基于WST的特征实现的。使用两种10倍的交叉验证方法获得的结果表明,WST与CON CON CONTAILAL分类器一起是CNN的替代品,用于对酒精和正常脑电图分类。在区分酒精和正常的脑电图记录方面,枕骨和顶部区域的基于WST的特征是最有用的。
具有消费级EEG设备的基于EEG的实时情感识别(EEG-ER)涉及使用减少的渠道进行情绪进行分类。这些设备通常只提供四个或五个通道,与大多数当前最新研究中通常使用的大量通道(32或更多)不同。在这项工作中,我们建议使用离散小波变换(DWT)提取时频域特征,并且我们使用几秒钟的时间窗口来执行eeg-er-ers分类。该技术可以实时使用,而不是在整个会话后数据后使用。我们还将在先前研究中开发的基线去除预处理应用于我们提出的DWT熵和能量特征,从而显着提高了分类精度。我们考虑两个不同的分类架构,一个3D卷积神经网络(3D CNN)和一个支持向量机(SVM)。我们在主题独立和依赖于主题的设置上评估了这两个模型,以对个人情绪状态的价和唤醒维度进行分类。我们对DEAP数据集提供的完整32通道数据以及同一数据集的5通道提取物进行了测试。SVM模型在所有提出的场景中表现最佳,对于整个32渠道主体依赖性案例的价准确度为95.32%,唤醒的精度为95.68%,击败了先前的实时EEG-EEG-EEG-EEG-EEG依赖性依赖性基准。也获得了与受试者的情况下的价准确度为80.70%,唤醒的精度为81.41%。将输入数据降低到5个通道仅在所有情况下平均将精度降低3.54%,从而使该模型适合与更易于访问的低端EEG设备一起使用。
常规控制系统通常不受非线性和不确定性的共存。本文提出了一个新型的大脑情感神经网络,以支持解决此类挑战的问题。所提出的网络将小波神经网络集成到传统的大脑情感学习网络中。通过引入经常性结构来进一步增强这一点,以利用两个网络作为大脑情感学习网络的两个渠道。因此,提出的网络结合了小波函数的优势,反复机制和大脑情感学习系统,以在不确定的环境下对非线性问题的最佳性能。所提出的网络可与一个边界综合器一起模仿理想的控制器,并且根据从Lyapunov稳定性分析理论得出的定律进行了参数。提出的系统应用于两个不确定的非线性系统,包括一个混乱的系统和模拟的3-DOF球形关节机器人。实验表明,所提出的系统的表现优于其他流行的基于神经网络的控制系统,表明所提出的系统的优势。