俄罗斯小麦蚜虫(RWA; Diuraphis noxia [kurdjumov])是世界上最重要的和侵入性的小麦,大麦和其他谷物的害虫之一,并且对全球秋季小麦有至关重要的经济影响。抗性品种的发展可能会导致有力控制RWA控制的新RWA生物型的连续出现,从而强调了确定新的抗性来源的需求。用全身性杀虫剂控制RWA在经济上昂贵,对环境和人类健康危害。因此,控制RWA的最有效方法是确定和开发具有耐药基因的小麦品种。提出的研究试图确定25种小麦品种的DN基因,其中包括乌兹别克斯坦小麦育种计划的19种品种和俄罗斯育种的6种品种。PCR筛选进行了六个(XGWM44,XGWM111,XGWM635,XGWM337,XGWM337,XGWM642和XGWM473)SSR标记与DN基因相关的SSR标记,以识别小麦植物中的遗传多态性。结果帮助研究人员参与了育种计划,遗传改善和有害生物管理,这有助于小麦养殖的经济可行性。反过来,它通过提高小麦产量并最大程度地减少损失来增强粮食安全并促进区域和国家一级的财务稳定。
小麦及其衍生食品分布广泛,是全球主要食物来源之一。在过去几十年中,与小麦有关的疾病发病率已成为人类面临的全球性问题,这可能与小麦衍生食品的传播有关。已确定结构和代谢蛋白,如 α-淀粉酶/胰蛋白酶抑制剂 (ATI),与小麦过敏(面包师哮喘)和非腹腔性小麦敏感症 (NCWS) 的发病有关。ATI 是一组外源性蛋白酶抑制剂,由分散在硬粒小麦和面包小麦的几条染色体上的多基因家族编码。WTAI-CM3 和 WTAI-CM16 亚基被认为是与面包师哮喘和可能的 NCWS 发病有关的主要蛋白质。使用 CRISPR-Cas9 多路复用策略编辑意大利硬粒小麦品种 Svevo 的谷粒中的 ATI 亚基 WTAI-CM3 和 WTAI-CM16,目的是生产出具有减少不良反应中潜在过敏原数量的小麦品系。使用无标记基因方法,即在不使用选择剂的情况下再生植物,直接从 T 0 代获得没有 CRISPR 载体的纯合突变植物。与传统育种计划相比,这项研究证明了 CRISPR 技术能够在更短的时间内敲除免疫原性蛋白质。在分子(测序和基因表达研究)或生化(免疫学测试)水平上确认了对两个目标基因的编辑。值得注意的是,作为一种多效性效应,编辑品系中的 ATI 0.28 假基因被激活。
植物分子生理学的关键实验室,植物学研究所,中国科学院,北京100093,中国中国国家植物园,北京100093,c国家植物细胞的主要实验室 Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China e University of Chinese Academy of Sciences, Beijing 100049, China f International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China g CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental生物学,中国科学院,北京100101,中国植物分子生理学的关键实验室,植物学研究所,中国科学院,北京100093,中国中国国家植物园,北京100093,c国家植物细胞的主要实验室 Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China e University of Chinese Academy of Sciences, Beijing 100049, China f International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China g CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental生物学,中国科学院,北京100101,中国
小麦是全球粮食安全的重要贡献者,为了养活不断增长的人口,小麦需要进一步改良。功能遗传学和基因组学工具可以帮助我们了解不同基因的功能并设计有益的变化。在这项研究中,我们使用启动子捕获分析对四倍体小麦品种 Kronos 的 1,513 株诱变植物中所有高置信度注释基因上游 2 kb 区域进行测序。我们鉴定了 430 万个诱发突变,准确率为 99.8%,突变密度为每 kb 41.9 个突变。我们还将 Kronos 外显子组捕获读数重新映射到 Chinese Spring RefSeq v1.1,鉴定了 470 万个突变,并预测了它们对注释基因的影响。使用这些预测,我们鉴定出的非同义替换比原始研究多 59%,截断突变多 49%。为了展示启动子数据集的生物学价值,我们选择了 VRN - A1 春化基因启动子内的两个突变。这两个突变都位于转录因子结合位点内,显著改变了 VRN - A1 的表达,一个突变减少了每个穗的小穗数量。这些公开可用的测序突变数据集提供了快速且廉价的途径,可以获取大多数小麦基因启动子和编码区中诱导的变异。这些突变可用于了解和调节基因表达和表型,用于基础和商业应用,有限的政府监管可以促进部署。这些突变集合与基因编辑一起,为加速这种经济重要作物的功能遗传研究提供了宝贵的工具。
Biostimulans是可以改善养分可用性,养分吸收,营养利用效率和对非生物胁迫的耐受性的产品,目的是增加植物的生长和产量。在过去的几十年中,生物刺激物的兴趣和市场增长,预计将具有较大的复合年增长率。每年市场上的产品数量增加,销售机构将其促进其收益率上升和盈利。本论文旨在研究产物泡(Azotobacter salinestris Cect 9690)产品对不同温度和N级别春季小麦的N蓄能的影响。这项研究是作为锅实验进行的,在该实验中,在Ultuna的BioCentrum气候室中培养了有没有供应泼妇的春季小麦。该实验具有三因素的分开图设计,其温度状态为主要图,N速率和泼妇处理作为子图。两个温度方案之间的泼妇治疗的影响有所不同。在高温下,与未经处理的对照相比,在泼妇处理的植物中,具有显着的较高的N蓄能,对应于4,09 kgn/ha。另一方面,在低温下,与维克兰处理过的小麦相比,未经处理的对照中的N蓄能明显高出5,90 kgn/ha。在任何温度下,N级和泼妇处理之间均无显着相互作用。必须研究细菌在不同环境条件下的工作方式。参数(例如土壤类型,pH,温度和品种)可以影响细菌的作用,并且重要的是要了解这些参数与细菌之间的相互作用是如何工作的。这项研究的结果表明,需要进行更多的研究来保证氮杂杆菌的n固定。
抽象关键信息小麦转录因子BZIPC1与FT2相互作用,并影响Spikelet和每个峰值的晶粒数。我们确定了一个天然等位基因,对这两个经济上重要的特征具有积极影响。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。 然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。 在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。 在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。 BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。 在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。 分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。 H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。我们开发了两个非同义SNP的标记,这些标记将H1单倍型中的BZIPC-B1B等位基因与所有其他单倍型中存在的祖先BZIPC-B1A等位基因区分开。这些诊断标记是加速在面食和面包小麦育种计划中的有利BZIPC-B1B等位基因部署的有用工具。
摘要新释放的小麦品种具有不同的营养需求,其产量潜在地阻碍了对氮(N)受精的普遍建议。在2018/19和2019/20的生长季节进行了现场实验,以评估不同N肥料对生长率和两个新发行的小麦品种(Borlaug 2020和Zinc Gahun-1)的生长和产量参数的响应,这是一个有希望的线(NL 1179)和Vijay作为检查品种。五个n级(即0,50,100,150和200 kg n ha -1)在拆分图中设计的实验中使用了三个复制。氮水平和基因型分别分配为主要情节和子图处理。对两个生长季节的组合分析表明,所有新释放和有希望的基因型的表现都比检查品种要好。NL 1179记录了最高的谷物产量,其次是Borlaug 2020和Gahun-1锌。观察到晶粒产量的线性增加,n速率从0增加到200 kg ha -1,而200 kg n ha -
小麦是一种重要的谷物,全球一半人口都食用小麦。小麦面临环境压力,人们使用了不同的技术(CRISPR、基因沉默、GWAS 等)来提高其产量,但 RNA 编辑 (RES) 在小麦中尚未得到充分探索。RNA 编辑在控制环境压力方面具有特殊作用。对不同类型的小麦基因型中的 RES 进行了全基因组鉴定和功能表征。我们通过 RNA 测序分析采用了六种小麦基因型来实现 RES。研究结果表明,RNA 编辑事件均匀发生在所有染色体上。RNA 编辑位点随机分布,在小麦基因型中检测到 10-12 种类型的 RES。在耐旱基因型中检测到的 RES 数量较多。在六种小麦基因型中还鉴定了 A-to-I RNA 编辑(2952、2977、1916、2576、3422 和 3459)位点。基因本体分析后发现,大多数基因参与了分子过程。还检查了小麦中的 PPR(五肽重复序列)、OZ1(细胞器锌指序列)和 MORF/RIP 基因表达水平。正常生长条件使这三个不同基因家族的基因表达出现差异,这意味着不同基因型的正常生长条件可以改变 RNA 编辑事件并影响基因表达水平。而 PPR 基因的表达没有变化。我们使用变异效应预测器(VEP)来注释 RNA 编辑位点,Local White 在蛋白质的 CDS 区域具有最高的 RES。这些发现将有助于预测其他作物的 RES,并有助于小麦抗旱性的发育。
小麦是一种广泛种植的草,是一种谷物,是全球主食。构成了小麦的许多种类;最广泛的生长是小麦(T. aestivum)。小麦的营养价值极为重要,因为它在少数农作物物种中占据了重要地位,作为主食食物来源。小麦的重要性主要是由于其种子可以被磨碎成面粉,泥粉种类等,而面粉,米果酸酯等形成了面包和其他面包店的基本成分以及意大利面,因此它为世界上大多数人群提供了营养的主要来源。如果满足估计的世界人口增长的粮食需求,则预测对谷物的需求将大大增加。,但对这些社区还有另一个潜在的好处,这是确保这种主食作物在营养上是基本的,并有助于消除困扰他们的数百万个与营养相关的缺乏疾病。应该强调的是,在过去,没有一个例子,植物是为了改善其营养含量的。如果发生这种情况,则纯粹是偶然的,而不是设计[5-7]。小麦谷物是椭圆形的,尽管不同的小麦的谷物范围为
此后,加拿大农业及农业食品部莱斯布里奇研究与发展中心的高级研究员贝雷斯一直致力于解答这个问题,他通过在艾伯塔省、萨斯喀彻温省以及最近的马尼托巴省测试小麦早期播种的结果。他的研究重点是超早播种,即在土壤达到一定温度时播种。春小麦的这一过程最早可以在二月或三月开始,具体取决于年份。贝雷斯表示,迄今为止,这项研究的结果(目前正在进行中,部分由萨斯喀彻温省小麦局资助)一致表明,“超早”播种对春小麦的产量和质量都有积极的影响。